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Tamari lattice, as quotient of the weak order

Sn as a Coxeter group generated by si = (i, i+ 1)

For w ∈ Sn, ℓ(w) = min. length of factorization of w in si

(Left) weak order fweak : siw covers w iff ℓ(siw) = ℓ(w) + 1

321

231 312

213 132

123

321

213

132

123

312

Sylvester class : permutations with the same binary search tree

Only one 231-avoiding in each class. Induced order = Tamari.
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Parabolic subgroup and parabolic quotient of Sn

Parabolic subgroup : ïsj , j ∈ Jð for J ¦ [n− 1]

Has the form Sα1
× · · ·×Sαk

with ³ = (³1, . . . , ³k) a composition of n.

1 2 3 4 5 6 7 8 9

12 3 4 56 7 8 9

Parabolic quotient : Sα
n = Sn/(Sα1

× · · · ×Sαk
).

1 23 45 6 78 9

increasing

Increasing in each region
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Parabolic permutations avoiding 231

(³, 231)-pattern : indices i < j < k in different regions with

w(k) < w(i) < w(j),

w(k) + 1 = w(i).

(³, 231)-avoiding permutations: without (³, 231) patterns

12 3 45 67 8 9

1 23 45 6 78 9

S
α
n(231) : set of (³, 231)-avoiding permutations
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Parabolic Tamari lattice

Parabolic Tamari lattice T α
n = (Sα

n(231),≤weak) (Mühle–Williams
2019)

12|34|5

12|35|4 13|24|5

12|45|3 13|25|4 14|23|5 23|14|5

14|35|2 23|15|4 15|23|4 24|13|5

34|25|1 15|24|3 25|13|4 34|12|5

15|34|2 25|14|3 35|12|4

35|24|1 45|12|3

45|13|2

45|23|1

Isomorphic to certain ¿-Tamari lattices (Ceballos–F.–Mühle 2020,
F.–Mühle–Novelli 2021).
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Parabolic Cataland

Ceballos–F.–Mühle 2020: a combinatorial model as center of bijections!

5 3 4 10 1 2 7 6 9 13 14 8 11 12

Simplifying some bijections in (Mühle–Williams 2019).

Link to walks in the quadrant in (Bousquet-Mélou–Mishna 2010).

Solving a conjecture in (Bergeron–Ceballos–Pilaud 2022).

Recovering the zeta map in q, t-Catalan combinatorics.
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Left-aligned colored trees

T : plane tree with n non-root nodes;

³ = (³1, . . . , ³k) : composition of n

Active nodes : not yet colored, but parent is colored or the root.

Coloring algorithm : For i from 1 to k,

Fail if there are less than ³i active nodes;

Otherwise, color the first ³i from left to right with color i.

α = (1, 3, 1, 2, 4, 3) ¢ 14

When succeeded, (T, ³) is a left-aligned colored tree (or a LAC tree).
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To permutations

Label from n to 1 clockwise, then read by regions.

(T, α)

1 2

3 4

5

6

7

8

9

10

11 12

13 14

1 2

3 4

5

6

7

8

9

10

11 12

13 14

Ξperm(T, α) = 5 | 3 4 10 | 1 | 2 7 | 6 9 13 14 | 8 11 12 ∈ S
α

n
(231)

Ξperm

A variant of binary search tree.
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To bounce pairs

Bounce pair: A Dyck path P above the bounce path of composition α.

Based on the root poset of Sn (Mühle–Williams 2019).

α = (1, 3, 1, 2, 4, 3) ¢ 14

Ξbounce

2

2

2 2

4

0

0 0

1 1

0 0

0
0

0

4 2
2 20

1
0

0

0 2 1 0

0 0 0

#↑ on x = 0 ô #children of the root

#↑ in region k ô #children of nodes in region k from right to left
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To steep pairs

Steep pair: Two nested Dyck paths, the upper one without →→ except
the end (Bergeron–Ceballos–Pilaud 2022, Hopf algebra on pipe dreams).

In bijection with walks in N
2 from (0, 0) to x-axis with steps { ↑ ,↖,¸}.

(Bousquet-Mélou–Mishna 2010, Mishna–Rechnitzer, 2009)

Asymptotics cn−1/23n, but not D-finite...

Ξsteep(T, α)(T, α)

Lower path: depth-first search from right to left.

Upper path: red node to ↑, white node to →↑, padding with →.

All α of n combined!
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Detour to q, t-Catalan combinatorics

a(1) = 0

1

2

3

3

3

3

1

a(9) = 2

area(D) =
∑

i
a(i) = 18

dinv(D) = #{(i, j) | i < j, (a(i) = a(j) ∨ a(i) = a(j) + 1} = 13

bounce(D) =
∑

i
(i− 1)αi = 7

4× 0 = 0

3× 1 = 3

2× 2 = 4

bounce(P ): sum of (i− 1)αi, with α constructed greedily.

area(P ): number of squares under P .

dinv(P ): complicated...
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Zeta map from diagonal harmonics

Theorem (Haglund and Haiman, see Haglund 2008)

By summing over all Dyck paths of order n, we have

∑

n≥0

zn
∑

D∈Dn

qarea(D)tbounce(D) =
∑

n≥0

zn
∑

D∈Dn

qdinv(D)tarea(D).

Related to diagonal coinvariant space.

Also symmetry in q, t by algebraic argument only.

Theorem (Haglund 2008)

There is a bijection ζ on Dyck paths that transfers the pairs of statistics

(dinv, area) → (area, bounce).

First given in (Andrews, Krattenthaler, Orsina and Papi, 2001).
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Zeta map, via LAC trees

area(D) = 18

bounce(D) = 7

dinv(D) = 18

area(D) = 7

ζ = Ξbounce ◦ Ξ
−1
steep

ΞsteepΞbounce

area-dinv: # certain pairs of nodes

bounce-area: sum of (depth - 1) over all nodes

Also the labelled version in (Haglund–Loehr 2005)

A bijective proof of Conj. 7.1 in (Matherne–Morales–Selover 2022)
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Coxeter group, type B

Type B: permutations w of ±[n]
def
= {−n, . . . ,−1, 1, . . . , n} that are

sign-symmetric, i.e., w(−i) = −w(i). Also hyperoctahedral group Hn.

One-line notation: (with k for −k)

w = 9 7 8 5 6 1 3 4 2 | 2 4 3 1 6 5 8 7 9.

Or only the right (positive) part: w =| 2 4 3 1 6 5 8 7 9

Inversion of w ∈ Hn: indices i, j ∈ ±[n] with i < j but w(i) > w(j)

Sign-symmetry ⇒ if i, j is an inversion, then −j,−i too.

Weak order (left): w ≤weak w
′ ⇔ inversion set of w′ includes that of w
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Tamari lattice, type B

Successor in ±[n]: i+ = i+ 1, except (−1)+ = 1

Type-B 231-pattern in w: indices i < j < k in ±[n] such that

j > 0; (to break sign-symmetry)

w(i) = w(k)+, w(j) > w(i).

4 3 5 1 2 2 1 5 3 4

3 45 1 2 2 1 54 3

Hn(231): 231-avoiding sign-symmetric permutations

Type-B Tamari lattice (Reading 2007): TamB(n)
def
= (Hn(231),≤weak).
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Parabolic quotient of Hn

Generators: S = {s0, s1, . . . , sn−1}

For i ≥ 1, si exchanges i and i+ 1 (thus −i and −i− 1);

s0 exchanges 1 and −1.

Type-B composition: α = (α1, . . . , αk), with possibly α0 = 0

Split when α starts with 0, join otherwise.

Parabolic quotient of Hn, denoted by Hα

4 2 7 6 5 1 3 8 9

α = (0, 2, 1, 4, 2)

9 8 3 1 5 6 7 2 4

3 5 6 2 1 4 7 8 9

α = (2, 1, 4, 2)

9 8 7 4 1 2 6 5 3

(split)

(join)

increasing

increasing

In the join case, the central region is positive for positive indices.
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Type-B (α, 231)-patterns

Type-B (α, 231)-pattern in w: indices i < j < k in ±[n] such that

i, j, k in different regions; (parabolic)

j > 0; (to break sign-symmetry)

w(i) = w(k)+;

w(j) > w(i) when α is split or j > α1; (231)

w(j) < w(k) when α is join and j ≤ α1. (312)

Split case:

Pattern 4 7 3 1 6 2 5 5 2 6 1 3 7 4

Pattern 4 5 1 6 2 3 7 7 3 2 6 1 5 4

Join case:

Not pattern 6 4 8 7 5 3 2 1 1 2 3 5 7 8 4 6

Pattern 7 5 4 3 8 6 2 1 1 2 6 8 3 4 5 7

Flipped for the joined region!
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Type-B parabolic Tamari lattice

Hα(231): Type-B (α, 231)-avoiding permutations

Type-B parabolic Tamari lattice: TamB(α) = (Hα(231),≤weak) How?

3 2 1 1 2 3

3 2 1 1 2 3

3 1 2 2 1 3

3 1 2 2 1 3

2 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3

2 1 3 3 1 2

3 2 1 1 2 31 2 3 3 2 1

1 2 3 3 2 1 1 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 23 1 2 2 1 3

2 1 3 3 1 2

3 2 1 1 2 3 1 2 3 3 2 1

1 2 3 3 2 11 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

Theorem (F.–Mühle-Novelli 2022+)

TamB(α) is a quotient lattice of the weak order of Hα, and is congruence

uniform and trim.
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Combinatorial models

Split case

Join case

4 7 8 11 129 1 5 3 2 6 10 13

5 3 9 10 6 1 8 7 2 4 13 11 12

Work in progress. Some bijections clear, some less.
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LAC trees, type B

α = (2, 1, 3, 5, 2)

or α = (0, 2, 1, 3, 5, 2)

α = (2, 1, 3, 5, 2)α = (0, 2, 1, 3, 5, 2)

Type-B LAC tree: LAC tree (T, α) + switch nodes among

(α split) children of the root;

(α join) nodes in region 1 + chidren of the first child of the root.

Moreover, for α join, at most half of the switch nodes are in region 1.

For α join, first child of the root acts as a second root.
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To permutation

α = (0, 2, 1, 3, 5, 2)

Alternating contour walk:

Label nodes from n to 1, with sign given by direction;

Switch on switch buds (squares).

Same for the join case!
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To permutation

11 12
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To permutation

11 12

13
5

6

78

9

10

α = (0, 2, 1, 3, 5, 2)

Alternating contour walk:

Label nodes from n to 1, with sign given by direction;

Switch on switch buds (squares).

Same for the join case!
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To permutation

11 12

13

1 2

3
5

6

78

9

10

4

α = (0, 2, 1, 3, 5, 2)

5 3 9 10 6 1 8 7 2 4 13 11 12

Alternating contour walk:

Label nodes from n to 1, with sign given by direction;

Switch on switch buds (squares).

Same for the join case!
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To domain paths (type-B bounce pairs)

Domain based on the root poset of type-B.

α = (0, 2, 1, 3, 5, 2) Split case

T =

(T, S) = Λbounce(P, α) P = Ξbounce((T, S), α)

Split case:

Right part: just like in type A

Left part: given by paired up switch nodes, counted from right to left

Join case: an extra forbidden region, slightly more complicated... What?
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Type-C zeta map

Sulzgruber–Thiel 2018: (labelled) Zeta map for type B, C and D

T

ΞsteepΞbounce

ζC

Steep pair replaced by box path for the alternating contour walk.

We recover (labelled) zeta map for type C. Also transfer dinv ↔ area.
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Some enumerative theorems

Cover inversion of w ∈ Hn: inversion i < j with w(i) = w(j)+.

cov(w): #cover inversions of w.

Proposition (F.–Mühle–Novelli 2022+)

Take cα(x) =
∑

w∈Hα(231) x
cov(w). Then for α = (t, 1, . . . , 1), we have

cα(x) =

n−t
∑

k=0

(

n− t

k

)(

n+ t

k

)

xk, |Hα(231)| = cα(1) =

(

2n

n− t

)

.

Cover inversions = valleys in bounce path

Proposition (F.–Mühle–Novelli 2022+)

For α = (0, 1, 1, . . . , 1, 2), |Hα(231)| is the type-D Catalan number:

|Hα(231)| =
3n− 2

n

(

2n− 2

n− 1

)

.

24 / 25



Type A, parabolic Type A, parabolic objects Type B, classical Type B, parabolic Type B, parabolic objects

Further directions

Combinatorial description of the order?

Link to possible type-B ν-Tamari (Ceballos–Padrol–Sarmiento ’19)?

Type-B q, t-Catalan statistics (Stump 2010)?

Type-B zeta map?

Enumeration? (Lattice path model known for split case)

Type-D parabolic Cataland?
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Further directions

Combinatorial description of the order?

Link to possible type-B ν-Tamari (Ceballos–Padrol–Sarmiento ’19)?

Type-B q, t-Catalan statistics (Stump 2010)?

Type-B zeta map?

Enumeration? (Lattice path model known for split case)

Type-D parabolic Cataland?

Thank you for your attention!
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Where are the conditions from?

Reading 2007: Universal construction of Tamari (Cambrian) lattices for
all type

On c-aligned elements, with c a Coxeter element (product of all si)

Type B: we take c = s0s1 · · · sn−1

w is c-aligned ⇔ forcing relations: some t ∈ cov(w) ⇒ some s ∈ Inv(w)

Determined by a linear order of inversions given by the c-sorting word of
the longest element in Hn

Type B, parabolic: replace the longest element in Hn by that in Hα
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A slide not meant to be read

!!! Headache warning !!!

w ∈ Hα is c-aligned if, for all 1 ≤ i < k ≤ n,

(1) if [[i]] ∈ cov(w), then [[j]] ∈ Inv(w) for all 1 ≤ j < i with i, j in
different regions;

(2) if ((i k)) ∈ cov(w), then ((i j)) ∈ Inv(w) such that i, j, k are in
different regions;

(3) if ((−k i)) ∈ cov(w), then
(3a) [[i]] ∈ Inv(w) when i > α1 or α is split,
(3b) ((−j i)) ∈ Inv(w) for 1 f j < k with j, k in different regions when α

is split or j > α1,
(3c) ((j k)) ∈ Inv(w) when j f α1, j ̸= i and α is join,
(3d) ((−k j)) ∈ Inv(w) for 1 f j < i with i, j in different regions when α

is split or j > α1,
(3e) ((j i)) ∈ Inv(w) when i > j > α1 and α is join.

Summed up nicely by pattern avoidance !

> Back <
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Domains for type-B compositions

α = (0, 2, 1, 3, 5, 2) α = (2, 1, 3, 5, 2)

Dα Dα

OO

For the join case, exchange (?) the roles of the root and the second root.

Highest y on x = 0: α1 + # children of the second root.

# ↑ on x = α1: # children of the root not in region 1.

So that the highest y-coordinate on x = 0 is the max number of switch
nodes.

> Back <
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