Combinatorial models and bijections in Parabolic Cataland, type A and B

Wenjie Fang, LIGM, Université Gustave Eiffel

With Cesar Ceballos and Henri Mühle, arXiv:1903.08515 With Henri Mühle et Jean-Christophe Novelli, partly in progress, arXiv:2112.13400

03 July 2023, Journées CombAlg 2023

Tamari lattice, as quotient of the weak order

\mathfrak{S}_{n} as a Coxeter group generated by $s_{i}=(i, i+1)$
For $w \in \mathfrak{S}_{n}, \ell(w)=\min$. length of factorization of w in s_{i}
(Left) weak order $\leq_{\text {weak }}: s_{i} w$ covers w iff $\ell\left(s_{i} w\right)=\ell(w)+1$

Sylvester class : permutations with the same binary search tree
Only one 231-avoiding in each class. Induced order $=$ Tamari.

Parabolic subgroup and parabolic quotient of \mathfrak{S}_{n}

Parabolic subgroup : $\left\langle s_{j}, j \in J\right\rangle$ for $J \subseteq[n-1]$
Has the form $\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{k}}$ with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ a composition of n.

Parabolic quotient : $\mathfrak{S}_{n}^{\alpha}=\mathfrak{S}_{n} /\left(\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{k}}\right)$.

Increasing in each region

Parabolic permutations avoiding 231

($\alpha, 231$)-pattern : indices $i<j<k$ in different regions with

- $w(k)<w(i)<w(j)$,
- $w(k)+1=w(i)$.
($\alpha, 231$)-avoiding permutations: without $(\alpha, 231)$ patterns

$\mathfrak{S}_{n}^{\alpha}(231)$: set of $(\alpha, 231)$-avoiding permutations

Parabolic Tamari lattice

Parabolic Tamari lattice $\mathcal{T}_{n}^{\alpha}=\left(\mathfrak{S}_{n}^{\alpha}(231), \leq_{\text {weak }}\right)$ (Mühle-Williams 2019)

Isomorphic to certain ν-Tamari lattices (Ceballos-F.-Mühle 2020, F.-Mühle-Novelli 2021).

Parabolic Cataland

Ceballos-F.-Mühle 2020: a combinatorial model as center of bijections!

- Simplifying some bijections in (Mühle-Williams 2019).
- Link to walks in the quadrant in (Bousquet-Mélou-Mishna 2010).
- Solving a conjecture in (Bergeron-Ceballos-Pilaud 2022).
- Recovering the zeta map in q, t-Catalan combinatorics.

Left-aligned colored trees

- T : plane tree with n non-root nodes;
- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$: composition of n

Active nodes : not yet colored, but parent is colored or the root.
Coloring algorithm : For i from 1 to k,

- Fail if there are less than α_{i} active nodes;
- Otherwise, color the first α_{i} from left to right with color i.

$$
\alpha=(1,3,1,2,4,3) \vdash 14
$$

When succeeded, (T, α) is a left-aligned colored tree (or a LAC tree).

Left-aligned colored trees

- T : plane tree with n non-root nodes;
- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$: composition of n

Active nodes : not yet colored, but parent is colored or the root.
Coloring algorithm : For i from 1 to k,

- Fail if there are less than α_{i} active nodes;
- Otherwise, color the first α_{i} from left to right with color i.

$$
\alpha=(1,3,1,2,4,3) \vdash 14
$$

When succeeded, (T, α) is a left-aligned colored tree (or a LAC tree).

Left-aligned colored trees

- T : plane tree with n non-root nodes;
- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$: composition of n

Active nodes : not yet colored, but parent is colored or the root.
Coloring algorithm : For i from 1 to k,

- Fail if there are less than α_{i} active nodes;
- Otherwise, color the first α_{i} from left to right with color i.

$$
\alpha=(1,3,1,2,4,3) \vdash 14
$$

When succeeded, (T, α) is a left-aligned colored tree (or a LAC tree).

Left-aligned colored trees

- T : plane tree with n non-root nodes;
- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$: composition of n

Active nodes : not yet colored, but parent is colored or the root.
Coloring algorithm : For i from 1 to k,

- Fail if there are less than α_{i} active nodes;
- Otherwise, color the first α_{i} from left to right with color i.

When succeeded, (T, α) is a left-aligned colored tree (or a LAC tree).

To permutations

Label from n to 1 clockwise, then read by regions.

A variant of binary search tree.

To bounce pairs

Bounce pair: A Dyck path P above the bounce path of composition α. Based on the root poset of \mathfrak{S}_{n} (Mühle-Williams 2019).

$\# \uparrow$ on $x=0 \Leftrightarrow \#$ children of the root
$\# \uparrow$ in region $k \Leftrightarrow$ \#children of nodes in region k from right to left

To steep pairs

Steep pair: Two nested Dyck paths, the upper one without $\rightarrow \rightarrow$ except the end (Bergeron-Ceballos-Pilaud 2022, Hopf algebra on pipe dreams). In bijection with walks in \mathbb{N}^{2} from $(0,0)$ to x-axis with steps $\{\uparrow, \nwarrow, \searrow\}$. (Bousquet-Mélou-Mishna 2010, Mishna-Rechnitzer, 2009)

Asymptotics $\mathrm{cn}^{-1 / 2} 3^{n}$, but not D-finite...

(T, α)

$$
\Xi_{\text {steep }}(T, \alpha)
$$

- Lower path: depth-first search from right to left.
- Upper path: red node to \uparrow, white node to $\rightarrow \uparrow$, padding with \rightarrow.

All α of n combined!

Detour to q, t-Catalan combinatorics

$$
\begin{aligned}
& \operatorname{bounce}(D)=\sum_{i}(i-1) \alpha_{i}=7 \\
& \operatorname{area}(D)=\sum_{i} a(i)=18 \\
& \operatorname{dinv}(D)=\#\{(i, j) \mid i<j,(a(i)=a(j) \vee a(i)=a(j)+1\}=13
\end{aligned}
$$

- bounce (P) : sum of $(i-1) \alpha_{i}$, with α constructed greedily.
- area (P) : number of squares under P.
- $\operatorname{dinv}(P)$: complicated...

Zeta map from diagonal harmonics

Theorem (Haglund and Haiman, see Haglund 2008)

By summing over all Dyck paths of order n, we have

$$
\sum_{n \geq 0} z^{n} \sum_{D \in \mathcal{D}_{n}} q^{\operatorname{area}(D)} t^{\text {bounce }(D)}=\sum_{n \geq 0} z^{n} \sum_{D \in \mathcal{D}_{n}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)}
$$

Related to diagonal coinvariant space.
Also symmetry in q, t by algebraic argument only.

Theorem (Haglund 2008)

There is a bijection ζ on Dyck paths that transfers the pairs of statistics

$$
(\text { dinv, area) } \rightarrow \text { (area, bounce). }
$$

First given in (Andrews, Krattenthaler, Orsina and Papi, 2001).

Zeta map, via LAC trees

- area-dinv: \# certain pairs of nodes
- bounce-area: sum of (depth - 1) over all nodes
- Also the labelled version in (Haglund-Loehr 2005)
- A bijective proof of Conj. 7.1 in (Matherne-Morales-Selover 2022)

Coxeter group, type B

Type B: permutations w of $\pm[n] \stackrel{\text { def }}{=}\{-n, \ldots,-1,1, \ldots, n\}$ that are sign-symmetric, i.e., $w(-i)=-w(i)$. Also hyperoctahedral group \mathfrak{H}_{n}.
One-line notation: (with \bar{k} for $-k$)

$$
w=\overline{9} \overline{7} \overline{8} \overline{5} \overline{6} 1 \overline{3} \overline{4} 2 \mid \overline{2} 43 \overline{1} 65879 .
$$

Or only the right (positive) part: $w=\mid \overline{2} 43 \overline{1} 65879$
Inversion of $w \in \mathfrak{H}_{n}$: indices $i, j \in \pm[n]$ with $i<j$ but $w(i)>w(j)$
Sign-symmetry \Rightarrow if i, j is an inversion, then $-j,-i$ too.
Weak order (left): $w \leq_{\text {weak }} w^{\prime} \Leftrightarrow$ inversion set of w^{\prime} includes that of w

Tamari lattice, type B

Successor in $\pm[n]: i^{+}=i+1$, except $(-1)^{+}=1$
Type-B 231-pattern in w : indices $i<j<k$ in $\pm[n]$ such that

- $j>0$; (to break sign-symmetry)
- $w(i)=w(k)^{+}, w(j)>w(i)$.

$\mathfrak{H}_{n}(231)$: 231-avoiding sign-symmetric permutations
Type-B Tamari lattice (Reading 2007): $\operatorname{Tam}_{B}(n) \stackrel{\text { def }}{=}\left(\mathfrak{H}_{n}(231), \leq_{\text {weak }}\right)$.

Parabolic quotient of \mathfrak{H}_{n}

Generators: $S=\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$

- For $i \geq 1, s_{i}$ exchanges i and $i+1$ (thus $-i$ and $-i-1$);
- s_{0} exchanges 1 and -1 .

Type-B composition: $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, with possibly $\alpha_{0}=0$
Split when α starts with 0 , join otherwise.
Parabolic quotient of \mathfrak{H}_{n}, denoted by \mathfrak{H}_{α}

In the join case, the central region is positive for positive indices.

Type-B ($\alpha, 231$)-patterns

Type-B ($\alpha, 231$)-pattern in w : indices $i<j<k$ in $\pm[n]$ such that

- i, j, k in different regions; (parabolic)
- $j>0$; (to break sign-symmetry)
- $w(i)=w(k)^{+}$;
- $w(j)>w(i)$ when α is split or $j>\alpha_{1}$; (231)
- $w(j)<w(k)$ when α is join and $j \leq \alpha_{1}$. (312)

Split case:

| Pattern | 4 | $\overline{7}$ | $\overline{3}$ | 1 | $\overline{6}$ | $\overline{2}$ | 5 | $\overline{5}$ | 2 | $\mathbf{6}$ | 1 | 3 | 7 | $\overline{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pattern | 4 | $\overline{5}$ | $\overline{1}$ | 6 | $\overline{2}$ | 3 | 7 | $\overline{7}$ | $\mathbf{3}$ | 2 | $\overline{6}$ | 1 | $\mathbf{5}$ | $\mathbf{4}$ |

Join case:

| | | | | | | | | | | | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Not pattern | $\overline{6}$ | $\overline{4}$ | $\overline{8}$ | 7 | 5 | $\overline{3}$ | $\overline{2}$ | $\overline{1}$ | 1 | 2 | 3 | 5 | $\mathbf{7}$ | 8 | 4 | 6 |
| Pattern | $\overline{7}$ | $\mathbf{5}$ | $\overline{4}$ | 3 | $\overline{8}$ | $\overline{6}$ | $\overline{2}$ | $\overline{1}$ | 1 | $\mathbf{2}$ | 6 | 8 | $\overline{3}$ | $\mathbf{4}$ | 5 | 7 |

Flipped for the joined region!

Type-B parabolic Tamari lattice

$\mathfrak{H}_{\alpha}(231)$: Type-B ($\alpha, 231$)-avoiding permutations
Type-B parabolic Tamari lattice: $\operatorname{Tam}_{B}(\alpha)=\left(\mathfrak{H}_{\alpha}(231), \leq_{\text {weak }}\right)$

Theorem (F.-Mühle-Novelli 2022+)
$\operatorname{Tam}_{B}(\alpha)$ is a quotient lattice of the weak order of \mathfrak{H}_{α}, and is congruence uniform and trim.

Combinatorial models

Split case

Work in progress. Some bijections clear, some less.

LAC trees, type B

$\alpha=(2,1,3,5,2)$
or $\alpha=(0,2,1,3,5,2)$

$\alpha=(0,2,1,3,5,2)$

$\alpha=(2,1,3,5,2)$

Type-B LAC tree: LAC tree $(T, \alpha)+$ switch nodes among

- (α split) children of the root;
- (α join) nodes in region $1+$ chidren of the first child of the root.

Moreover, for α join, at most half of the switch nodes are in region 1.
For α join, first child of the root acts as a second root.

To permutation

Alternating contour walk:

- Label nodes from n to 1 , with sign given by direction;
- Switch on switch buds (squares).

Same for the join case!

To permutation

Alternating contour walk:

- Label nodes from n to 1 , with sign given by direction;
- Switch on switch buds (squares).

Same for the join case!

To permutation

Alternating contour walk:

- Label nodes from n to 1 , with sign given by direction;
- Switch on switch buds (squares).

Same for the join case!

To permutation

Alternating contour walk:

- Label nodes from n to 1 , with sign given by direction;
- Switch on switch buds (squares).

Same for the join case!

To domain paths (type-B bounce pairs)

Domain based on the root poset of type-B.

$\alpha=(0,2,1,3,5,2)$
Split case
Split case:

- Right part: just like in type A
- Left part: given by paired up switch nodes, counted from right to left Join case: an extra forbidden region, slightly more complicated...

Type-C zeta map

Sulzgruber-Thiel 2018: (labelled) Zeta map for type B, C and D

Steep pair replaced by box path for the alternating contour walk.
We recover (labelled) zeta map for type C. Also transfer dinv \leftrightarrow area.

Some enumerative theorems

Cover inversion of $w \in \mathfrak{H}_{n}$: inversion $i<j$ with $w(i)=w(j)^{+}$. $\operatorname{cov}(w)$: \#cover inversions of w.

Proposition (F.-Mühle-Novelli 2022+)

Take $c_{\alpha}(x)=\sum_{w \in \mathfrak{H}_{\alpha}(231)} x^{\operatorname{cov}(w)}$. Then for $\alpha=(t, 1, \ldots, 1)$, we have

$$
c_{\alpha}(x)=\sum_{k=0}^{n-t}\binom{n-t}{k}\binom{n+t}{k} x^{k}, \quad\left|\mathfrak{H}_{\alpha}(231)\right|=c_{\alpha}(1)=\binom{2 n}{n-t}
$$

Cover inversions $=$ valleys in bounce path

Proposition (F.-Mühle-Novelli 2022+)

For $\alpha=(0,1,1, \ldots, 1,2),\left|\mathfrak{H}_{\alpha}(231)\right|$ is the type- D Catalan number:

$$
\left|\mathfrak{H}_{\alpha}(231)\right|=\frac{3 n-2}{n}\binom{2 n-2}{n-1}
$$

Further directions

- Combinatorial description of the order?
- Link to possible type-B ν-Tamari (Ceballos-Padrol-Sarmiento '19)?
- Type-B q, t-Catalan statistics (Stump 2010)?
- Type-B zeta map?
- Enumeration? (Lattice path model known for split case)
- Type-D parabolic Cataland?

Further directions

- Combinatorial description of the order?
- Link to possible type-B ν-Tamari (Ceballos-Padrol-Sarmiento '19)?
- Type-B q, t-Catalan statistics (Stump 2010)?
- Type-B zeta map?
- Enumeration? (Lattice path model known for split case)
- Type-D parabolic Cataland?

Thank you for your attention!

Where are the conditions from?

Reading 2007: Universal construction of Tamari (Cambrian) lattices for all type

On c-aligned elements, with c a Coxeter element (product of all s_{i})
Type B: we take $c=s_{0} s_{1} \cdots s_{n-1}$
w is c-aligned \Leftrightarrow forcing relations: some $t \in \operatorname{cov}(w) \Rightarrow$ some $s \in \operatorname{lnv}(w)$
Determined by a linear order of inversions given by the c-sorting word of the longest element in \mathfrak{H}_{n}
Type B, parabolic: replace the longest element in \mathfrak{H}_{n} by that in \mathfrak{H}_{α}

A slide not meant to be read

!!! Headache warning !!!

$w \in \mathfrak{H}_{\alpha}$ is c-aligned if, for all $1 \leq i<k \leq n$,
(1) if $\llbracket i \rrbracket \in \operatorname{cov}(w)$, then $\llbracket j \rrbracket \in \operatorname{lnv}(w)$ for all $1 \leq j<i$ with i, j in different regions;
(2) if $((i k)) \in \operatorname{cov}(w)$, then $((i j)) \in \operatorname{lnv}(w)$ such that i, j, k are in different regions;
(3) if $((-k i)) \in \operatorname{cov}(w)$, then
(3a) $\llbracket i \rrbracket \in \operatorname{lnv}(w)$ when $i>\alpha_{1}$ or α is split,
(3b) $((-j i)) \in \operatorname{lnv}(w)$ for $1 \leq j<k$ with j, k in different regions when α is split or $j>\alpha_{1}$,
(3c) $((j k)) \in \operatorname{lnv}(w)$ when $j \leq \alpha_{1}, j \neq i$ and α is join,
(3d) $((-k j)) \in \operatorname{lnv}(w)$ for $1 \leq j<i$ with i, j in different regions when α is split or $j>\alpha_{1}$,
(3e) $((j i)) \in \operatorname{lnv}(w)$ when $i>j>\alpha_{1}$ and α is join.
Summed up nicely by pattern avoidance!
\geq Back $<$

Domains for type-B compositions

$$
\alpha=(0,2,1,3,5,2)
$$

$$
\alpha=(2,1,3,5,2)
$$

For the join case, exchange (?) the roles of the root and the second root.

- Highest y on $x=0: \alpha_{1}+\#$ children of the second root.
- \# \uparrow on $x=\alpha_{1}$: \# children of the root not in region 1 .

So that the highest y-coordinate on $x=0$ is the max number of switch nodes.
$>$ Back $<$

