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Preliminaries: Standard Young Tableaux

Let λ ⊢ n.

SYT (λ) = {SYT of shape λ}.

#SYT (λ) is given by the hook-length formula:

Theorem (Frame–Robinson–Thrall)

#SYT (λ) = n! ·
∏
u∈λ

1

h(u)
,

where h(u) is the hook-length of the cell u.

1 3 4 5 7

2 6 8

9
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A. Lazar (Université Libre de Bruxelles) July 4, 2023 2 / 19



Preliminaries: Standard Young Tableaux

Natural descent of T is an i s.t. i + 1 occurs in a higher row of T (not
the usual definition of descents for SYT).

D(T ) = {natural descents of T}, and comaj(T ) =
∑

i∈D(T )

(n − i).

1 3 4 5 7

2 6 8

9

Stanley’s hook-content formula implies:∑
T∈SYT (λ)

qcomaj(T ) = [n]q!
∏
u∈λ

1

[h(u)]q
,

where [a]q = 1 + q + · · ·+ qa−1 and [a]q! = [a]q[a− 1]q · · · [1]q.
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Preliminaries: (Reverse) Plane Partitions

Plane partition of λ: filling of the Young diagram of λ with pos. integers
that is weakly decreasing along rows and columns.

Reverse plane partition of λ: filling of the Young diagram of λ with pos.
integers that is weakly increasing along rows and columns.

6 6 5

6 4

1

1 1 2

3 4

3

PPm(λ) = {plane partitions of λ with largest entry ≤ m}.

RPPm(λ) = {reverse plane partitions of λ with largest entry ≤ m}.
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Preliminaries: (Reverse) Plane Partitions

If π is a plane partition, |π| is the sum of the entries of π.

MacMahon: product formula for the size generating function of PPm

when λ is the a× b rectangle:

Theorem (MacMahon)

∑
π∈PPm(a×b)

q|π| =
a∏

i=1

b∏
j=1

[i + j +m − 1]q
[i + j − 1]q

.
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Preliminaries: Set-Valued Fillings

Set-valued filling of λ: an assignment of a nonempty set of positive
integers to each cell of λ.

Standard set-valued Young tableau: a filling of λ with disjoint nonempty
subsets of [n + k] s.t.

Each element of [n + k] appears in exactly one cell.

The fill is strictly increasing along rows and columns, i.e. each entry
of a cell is smaller than everything below it and to its right.

1, 2 3, 5, 6 11

4, 7 8, 9, 10

Idea: SYT of shape λ with k additional entries.
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Preliminaries: Set-Valued Fillings

Set-valued SYT introduced by Buch in the context of algebraic geometry
(K -theory of the Grassmannian). Also arise in Brill–Noether theory.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy:
entries can appear in multiple cells, and we just require weak
increasing/decreasing along rows and columns.

SYT +k(λ) = {set-valued SYT of λ with k additional entries}.

PP+k
m (λ) and RPP+k

m (λ) defined similarly.

When k = 1, fillings are barely set-valued.
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q-Counting BSV Objects

Theorem (Hopkins–L.–Linusson)

1

∑
S∈SYT +1(a×b)

qcomaj+1(S) =
[a]q[b]q
[a+ b]q

[ab + 1]q

a−1∏
i=0

[i ]q!

[b + i ]q!
,

2

∑
τ∈RPP+1

m (a×b)

q|τ |−1 =
[a]q[b]q
[a+ b]q

[m]q

a∏
i=1

b∏
j=1

[i + j +m − 1]q
[i + j − 1]q

.

comaj+1 = slightly intricate statistic.

The q = 1 version of (1) was proven by Chan, López Mart́ın, Pflueger, and
Teixidor i Bigas. (2) is a barely set-valued version of MacMahon’s formula.

(1) is the m → ∞ limit of (2).
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A. Lazar (Université Libre de Bruxelles) July 4, 2023 8 / 19



q-Counting BSV Objects

Theorem (Hopkins–L.–Linusson)

1

∑
S∈SYT +1(a×b)

qcomaj+1(S) =
[a]q[b]q
[a+ b]q

[ab + 1]q

a−1∏
i=0

[i ]q!

[b + i ]q!
,

2

∑
τ∈RPP+1

m (a×b)

q|τ |−1 =
[a]q[b]q
[a+ b]q

[m]q

a∏
i=1

b∏
j=1

[i + j +m − 1]q
[i + j − 1]q

.

comaj+1 = slightly intricate statistic.

The q = 1 version of (1) was proven by Chan, López Mart́ın, Pflueger, and
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comaj+k

Let T ∈ SYT +k(λ), T ∗ the filling of λ with only the minimal elt of each
cell, and d1, . . . , dk the k additional elements.

T ∗ breaks up into skew shapes S1, . . . ,Sk+1, each consisting of the cells
filled with the numbers di + 1, . . . , di+1 − 1.

1 2 4

3 5, 6 7

8 9

↔ 1 2 4

3 5 6 7

8 9

D+k(T ) :=
⊔
D(Si ) ∪ {d1, . . . , dk}

comaj+k(T ) :=
∑

i∈D+k (T )

n + k − i
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SYT +1(2× 2)

S
1 2

3 4, 5

1 3

2 4, 5

1 2

3, 4 5

1 3

2, 4 5

1 4

2, 3 5

D+1(S) {5} {2, 5} {4} {2, 4} {3}

comaj+1(S) 0 3 1 4 2

S
1 2, 3

4 5

1 2, 4

3 5

1 3, 4

2 5

1, 2 3

4 5

1, 2 4

3 5

D+1(S) {3} {4} {2, 4} {2} {2, 3}

comaj+1(S) 2 1 4 3 5
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Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order
ideals J (P).

Use the framework of probability theory:

Carefully define probability distributions µq
≤,m, µ

q
lin and a random

variable ddeg on J (P).

Show that these distributions are suitably “nice”.

Compute Eµq
≤,m

(ddeg) and Eµq
lin
(ddeg) in two different ways.

Specialize these results to obtain our theorem.
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Two Rows

Up to now: Study SYT +k for fixed k and let total number of entries vary.

Question: What about fixing total number of entries and letting k vary?

Theorem (L.–Linusson)

For all n ≥ 2 ∣∣∣∣∣ ⊔
2b+k=n

SYT +k(2× b)

∣∣∣∣∣ = Cat(n − 1),

the n − 1st Catalan number.
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Catalan+k Combinatorics

Theorem (L.–Linusson)⊔
2b+k=n

SYT +k(2× b) ↔ 321− avoiding permutations of [n − 1]

Elements of top row ↔ right-to-left minima

#columns = #{inner valleys} − 1

∣∣∣∣∣∣∣∣
⊔

2b+k=n
m elts in top row

SYT +k(2× b)

∣∣∣∣∣∣∣∣ =
1
m

(n−1
m−1

)(n−2
m−1

)
,
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Bicolored Motzkin Paths

Bicolored Motzkin Path: Lattice path from (0, 0) to (n, 0) using steps
↗,↘,→. Steps → can be colored red or blue.

#{Bicolored Motzkin paths of length n} = Cat(n + 1) (bijection with
Dyck paths of length 2n + 2)
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Bicolored Motzkin Paths

Motz∗(n): Bicolored Motzkin paths with two restrictions:

1 No red steps on y = 0
2 No blue steps before first down step.

Theorem (L.–Linusson)⊔
2×b+k=n

SYT +k(2× b) ↔ Motz∗(n),

consequently
|Motz∗(n)| = Cat(n − 1).

Can also show that #{Motz(n) with restriction (1)} = Cat(n).

Consequence: Surprising combinatorial witness of

Cat(n − 1) ≤ Cat(n) ≤ Cat(n + 1)
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Ballotlike Paths

Q: What about bicolored restricted Motzkin paths that end at (n, i)?

Theorem (L.–Linusson)

For all 0 ≤ i ≤ n,

|Motz∗(n, i)| =
(

2n − 2

n − i − 1

)
−
(

2n − 2

n − i − 2

)
+

(
n − 2

n − i

)
.

Equivalently,∣∣∣∣∣ ⊔
2b+k−i=n

SYT +k(b, b − i)

∣∣∣∣∣ =
(

2n − 2

n − i − 1

)
−
(

2n − 2

n − i − 2

)
+

(
n − 2

n − i

)
.

Compare with the ballot numbers
(p+q

q

)
−
(p+q
q−1

)
.
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Ballotlike Paths

8 1
7 1 7
6 1 6 28
5 1 5 21 97
4 1 4 15 64 288
3 1 3 10 39 159 643
2 1 2 6 21 76 276 1002
1 1 1 3 9 28 90 297 1001
0 1 0 1 2 5 14 42 132 429

i/n 0 1 2 3 4 5 6 7 8
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q-ification

Current work:

∑
2b+k=n

 ∑
T∈SYT +k (2×b)

qcomaj+k (T )

 =???

This is a q-analog of the Catalan numbers. It seems to be new!

Question: Is there a nicer formula for it?

Determinantal formulas known for | SYT +k(a× b)|, but the naive
q-analogs don’t seem to work.
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q-ification

n Our qCat

1 0

2 1

3 q + 1

4 q3 + 2q2 + q + 1

5 q6 + 2q5 + 3q4 + 3q3 + 2q2 + 2q + 1

6 q10 + 2q9 + 3q8 + 7q7 + 6q6 + 5q5 + 6q4 + 7q3 + 3q2 + q + 1

Thank you!
Merci beaucoup!
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q-Toggle-Symmetry

Let P be a finite poset, q > 0. For p ∈ P the toggle statistics are

T +
p (I ) =

{
1, I ∪ {p} ∈ J (P)

0 else
T −
p (I ) =

{
1, p ∈ max(I )

0 else

The q-togglability statistic is T q
p := T +

p − qT −
p .

• •
• •
•

µ is q-toggle-symmetric if Eµ(T q
p ) = 0 for all p, that is, we are q times as

likely to toggle a p out of a random I ∈ J (P) as we are to toggle p into a
random I ∈ J (P).

A. Lazar (Université Libre de Bruxelles) July 4, 2023 19 / 19



q-Toggle-Symmetry

Let P be a finite poset, q > 0. For p ∈ P the toggle statistics are

T +
p (I ) =

{
1, I ∪ {p} ∈ J (P)

0 else
T −
p (I ) =

{
1, p ∈ max(I )

0 else

The q-togglability statistic is T q
p := T +

p − qT −
p .

• •
• •
•

µ is q-toggle-symmetric if Eµ(T q
p ) = 0 for all p, that is, we are q times as

likely to toggle a p out of a random I ∈ J (P) as we are to toggle p into a
random I ∈ J (P).
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