Geometric realizations of the s-permutahedron

Eva Philippe

Sorbonne Université

Journées du GT CombAlg, 3 juillet 2023

Joint work with Rafael S. González D’León, Alejandro H. Morales, Daniel Tamayo Jiménez, and Martha Yip
1. The s-weak order and the s-permutahedron
2. Triangulation of a flow polytope
3. Mixed subdivision of a sum of hypercubes
4. Polytopal subdivision delimited by an arrangement of tropical hypersurfaces
Motivation

<table>
<thead>
<tr>
<th>Weak order</th>
<th>Permutahedron</th>
<th>(\nu)-Tamari</th>
<th>(\nu)-Associahedron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagram</td>
<td>Diagram</td>
<td>Diagram</td>
<td>Diagram</td>
</tr>
</tbody>
</table>

Tamari lattice

Associahedron

\(\nu \)-Tamari

Préville-Ratelle, Viennot

\(\nu \)-Associahedron

Ceballos, Padrol, Sarmiento

Credit: Pons '19
Motivation

<table>
<thead>
<tr>
<th>Weak order</th>
<th>Permutahedron</th>
<th>s-Weak order</th>
<th>s-Permutahedron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamari lattice</th>
<th>Associahedron</th>
<th>(\nu)-Tamari</th>
<th>(\nu)-Associahedron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit: Pons '19

Préville-Ratelle, Viennot

Ceballos, Padrol, Sarmiento
s-decreasing trees (Ceballos-Pons ’20)

Let $s = (s_1, \ldots, s_n)$ be a (weak) composition (i.e. $s_i \in \mathbb{N}_{>0}$ or in \mathbb{N}).

An s-decreasing tree is a planar rooted tree on n internal vertices (called nodes), labeled on $[n]$ such that the node labeled i has $s_i + 1$ children and any descendant j of i satisfies $j < i$.

![Diagram of an s-decreasing tree]

Figure: An $(0, 0, 2, 1, 3)$-decreasing tree.
Let $s = (s_1, \ldots, s_n)$ be a composition (i.e. $s_i \in \mathbb{N}_{>0}$).

An s-decreasing tree is associated to a multipermutation of $1^{s_1} \ldots n^{s_n}$ that avoids the pattern 121. Such multipermutations are called *Stirling s-permutations*.

![Diagram of an s-decreasing tree and corresponding Stirling s-permutation](image)

Figure: An $(1, 1, 2, 2)$-decreasing tree and the corresponding Stirling s-permutation 313442.
The s-weak order

Figure: The $(1, 2, 2)$-weak order.
Conjecture 1 (Ceballos-Pons ’19)

The s-permutahedron can be realized as a polyhedral subdivision of a polytope which is combinatorially isomorphic to a permutahedron.

Conjecture 2 (Ceballos-Pons ’19)

If s has no zeros, there exists a geometric realization of the s-permutahedron such that the s-associahedron can be obtained from it by removing certain facets.
Outline

1. The s-weak order and the s-permutahedron

2. Triangulation of a flow polytope

3. Mixed subdivision of a sum of hypercubes

4. Polytopal subdivision delimited by an arrangement of tropical hypersurfaces
Associated to a composition $s = (s_1, \ldots, s_n)$ we consider the graph G_s on vertices $v_0, v_1, \ldots, v_{n+1}$ with:
- two edges from v_i to v_{i+1} for $i \in [n]$ and one edge from v_0 to v_1,
- $s_{n+1-i} - 1$ edges from v_0 to v_i for $i \in [n]$,
- the **framing** given by ordering incoming and outgoing edges from top to bottom on the drawing.

A **route** is a path from v_0 to v_{n+1}.

The **flow polytope** $F_{G_s} = \left\{ (f_e)_{e \in E} \text{ flow of } G \right\} \subset \mathbb{R}^E$ is the convex hull of the indicator vectors of the routes of G_s.

![Graph Diagram]

$s = 132$
We say that two routes P, Q of G are coherent with respect to the framing if they "do not cross".

For $C \in C^{\text{max}}$ (set of maximal cliques of coherent routes), Δ_C denotes the simplex with vertices the indicator vectors of the routes in C.

Theorem (Danilov-Karzanov-Koshevoy, '12)

The simplices $\{\Delta_C | C \in C^{\text{max}}(G, \preceq)\}$ form a (regular) triangulation of \mathcal{F}_G, called the DKK triangulation of \mathcal{F}_G with respect to the framing \preceq.

Figure: The maximal clique $\{l^0_w, \ldots, l^4_w\}$ corresponding to the $(1, 2, 1)$-Stirling permutation $w = 3221$.

\[l^0_w, l^1_w, l^2_w, l^3_w, l^4_w \]
Theorem (GMPTY, ’22)

The s-decreasing trees are in bijection with the simplices of the DKK triangulation of (\mathcal{F}_G, \preceq).
Moreover, two simplices are adjacent if and only if there is a cover relation in the s-weak order for the corresponding s-decreasing trees.

Figure: Dual of the DKK triangulation for $s = (1, 2, 1)$.
1. The s-weak order and the s-permutahedron

2. Triangulation of a flow polytope

3. Mixed subdivision of a sum of hypercubes

4. Polytopal subdivision delimited by an arrangement of tropical hypersurfaces
Minkowski sums

- Given polytopes P_1, \ldots, P_k in \mathbb{R}^n, their **Minkowski sum** is the polytope $P_1 + \ldots + P_k := \{ \sum x_i \mid x_i \in P_i \}$.
- The **Minkowski cells** of the sum are $\sum B_i$ where B_i is the convex hull of a subset of vertices of P_i.
- A **mixed subdivision** of a Minkowski sum is a collection of Minkowski cells such that their union covers the Minkowski sum and they intersect properly.
- A **fine mixed subdivision** is a minimal mixed subdivision via containment.

Figure: A (non fine) mixed subdivision of a sum of a square and a triangle.

Credit: De Loera-Rambau-Santos '19
Cayley Trick

\[C(P_1, \ldots, P_k) := \text{conv}(\{e_1\} \times P_1, \ldots, \{e_k\} \times P_k) \subset \mathbb{R}^k \times \mathbb{R}^n \] is the Cayley embedding of \(P_1, \ldots, P_k \).

Proposition (The Cayley trick)

The (regular) polytopal subdivisions (resp. triangulations) of \(C(P_1, \ldots, P_k) \) are in bijection with the (coherent) mixed subdivisions (resp. fine mixed subdivisions) of \(P_1 + \ldots + P_k \).

Credit: De Loera-Rambau-Santos '19
Flow polytopes are Cayley embeddings

Theorem (GMPTY, ’22)

The s-decreasing trees are in bijection with the maximal cells of a fine mixed subdivision of the Minkowski sum of hypercubes in \mathbb{R}^{n-1} given by

$$(s_n + 1)\square_{n-1} + \sum_{i=1}^{n-1} (s_i - 1)\square_{i-1}.$$

Proof : The flow polytope of G_s is a Cayley embedding of hypercubes.
Mixed subdivision of hypercubes

Figure: (a) Summands of the Minkowski cell corresponding to $w = 3221$. (b) Mixed subdivision of $2\square_2 + \square_1$ realizing the $(1, 2, 1)$-permutahedron.
1. The s-weak order and the s-permutahedron
2. Triangulation of a flow polytope
3. Mixed subdivision of a sum of hypercubes
4. Polytopal subdivision delimited by an arrangement of tropical hypersurfaces
From the mixed subdivision to a dual polyhedral complex
The regular subdivision S of a point configuration $A \subset \mathbb{R}^n$ can be obtained as the lower faces of the points of A lifted by an \textit{admissible height function} α.

Danilov-Karzanov-Koshevoy give an explicit admissible height function for DKK triangulations.
Such a lifted configuration is associated to a *tropical polynomial*:

\[
F(x) = \bigoplus_{i \in [m]} \alpha^i \odot x^{a^i} = \min \{ \alpha^i + \langle a^i, x \rangle \mid i \in [m] \},
\]

that defines the *tropical hypersurface*:

\[
\mathcal{T}(F) := \{ x \in \mathbb{R}^n \mid \text{the minimum of } F(x) \text{ is attained at least twice}\}.
\]
Such a lifted configuration is associated to a *tropical polynomial*:

$$F(x) = \bigoplus_{i \in [m]} \alpha^i \circ x^a^i = \min \left\{ \alpha^i + \langle a^i, x \rangle \mid i \in [m] \right\},$$

that defines the *tropical hypersurface*:

$$\mathcal{T}(F) := \{x \in \mathbb{R}^n \mid \text{the minimum of } F(x) \text{ is attained at least twice}\}.$$
Such a lifted configuration is associated to a *tropical polynomial*:

\[
F(x) = \bigoplus_{i \in [m]} \alpha^i \circ x^{a^i} = \min \left\{ \alpha^i + \langle a^i, x \rangle \mid i \in [m] \right\},
\]

that defines the *tropical hypersurface*:

\[
T(F) := \{ x \in \mathbb{R}^n \mid \text{the minimum of } F(x) \text{ is attained at least twice} \}.
\]
Such a lifted configuration is associated to a tropical polynomial:

\[
F(x) = \bigoplus_{i \in [m]} \alpha^i \odot x^{a^i} = \min \{ \alpha^i + \langle a^i, x \rangle \mid i \in [m] \},
\]

that defines the tropical hypersurface:

\[
\mathcal{T}(F) := \{ x \in \mathbb{R}^n \mid \text{the minimum of } F(x) \text{ is attained at least twice} \}.
\]

Theorem (folklore)

There is a bijection between the \(k \)-dimensional cells of \(S \) and the \((n - k) \)-dimensional cells of \(\mathcal{T}(F) \).

The bounded cells of \(\mathcal{T}(F) \) corresponds to the interior cells of \(S \).
When the point configuration is a Cayley embedding, there is a factorization of the tropical polynomial of the mixed subdivision corresponding to S via the Cayley trick and we obtain an arrangement of tropical hypersurfaces.

Theorem (GMPTY, '22)

The s-permutahedron can be realized as the bounded cells of an arrangement of tropical hypersurfaces.

We have explicit coordinates for the vertices and all the faces!
\[s = 1114 \]
\[s = 1333 \]
Thank you for your attention!

M. Joswig, "Essentials of tropical combinatorics", vol. 219, American Mathematical Society, 2021
