Pivot polytope of product of simplicies

Vincent Pilaud, Germain Poullot & Raman Sanyal
1. Pivot rules and pivot rule polytopes

2. Poset of slopes

3. Pivot rule polytope of products of simplices
Pivot rules and pivot rule polytopes
Shadow vertex rule

Linear optimization in dimension 2 (simplex method):

By convention, we always choose the upper path when optimizing.
Shadow vertex rule

Linear optimization in dimension 2 (simplex method):

By convention, we always choose the upper path when optimizing.

\[v_0 \rightarrow \ldots \rightarrow v_{\text{opt}} \]
Linear optimization in dimension 2 (simplex method):

By convention, we always choose the upper path when optimizing.
Shadow vertex rule

Linear optimization in dimension 2 (simplex method):

By convention, we always choose the upper path when optimizing.
Linear optimization in dimension 2 (simplex method): EASY!

By convention, we always choose the upper path when optimizing.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

Shadow vertex rule (i.e. “take the neighbor with the best slope”):

\[\omega(v) = \arg\max \left\{ \langle \omega, u - v \rangle \mid \langle c, u - v \rangle \right\}; \] improving neighbor of \(v \)

Applying the rule at every vertex gives a monotone arborescence.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[
\omega \cdot v_i + 1 \overset{\text{?}}{\overbrace{\omega \cdot v_i}}
\]

Shadow vertex rule (i.e. “take the neighbor with the best slope”):

\[
A_\omega(v) = \arg\max \left\{ \langle \omega, u - v \rangle, \langle c, u - v \rangle \right\}; \quad u \text{ improving neighbor of } v
\]

Applying the rule at every vertex gives a monotone arborescence.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[
A_\omega(v) = \arg\max \left\{ \langle \omega, u - v \rangle \mid \langle c, u - v \rangle; u \text{ improving neighbor of } v \right\}
\]

Applying the rule at every vertex gives a monotone arborescence.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[A_\omega(v) = \arg\max \left\{ \langle \omega, u - v \rangle \mid \langle c, u - v \rangle; u \text{ improving neighbor of } v \right\} \]

Applying the rule at every vertex gives a monotone arborescence.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[
\omega(v) = \arg\max \left\{ \langle \omega, u - v \rangle, \langle c, u - v \rangle \right\};
\]

Applying the rule at every vertex gives a monotone arborescence.
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[
A^ω(ν) = \arg\max \left\{ \frac{⟨ω, u − ν⟩}{⟨c, u − ν⟩} ; u \text{ improving neighbor of } ν \right\}
\]
Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional!

\[
A^\omega(v) = \arg\max \frac{\langle \omega, u - v \rangle}{\langle c, u - v \rangle}; u \text{ improving neighbor of } v
\]

Applying the rule at every vertex gives a \textit{monotone arborescence}.
Monotone path polytope and pivot rule polytope

Let $P \subset \mathbb{R}^d$ be a polytope.

Shadow vertex rule: $A^{\omega}(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule.
Let $P \subset \mathbb{R}^d$ be a polytope.

Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule.

Monotone path polytope $\Sigma_c(P)$ [BS92]: Fiber polytope of $P \xrightarrow{\pi} Q$ with Q a segment. (Can be seen as a Minkowski sum of sections of P.) The vertices of $\Sigma_c(P)$ are all coherent monotone paths.
Let $P \subset \mathbb{R}^d$ be a polytope.

Shadow vertex rule: $A^\omega(v) = \text{argmax} \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule.

Monotone path polytope $\Sigma_c(P)$ [BS92]: Fiber polytope of $P \xrightarrow{\pi} Q$ with Q a segment. (Can be seen as a Minkowski sum of sections of P.) The vertices of $\Sigma_c(P)$ are all coherent monotone paths.

Coherent arborescence: An arborescence that can be obtained via the shadow vertex rule.

Pivot rule polytope $\Pi_c(P)$: Polytope which vertices are all coherent arborescences.
Monotone path polytope and pivot rule polytope

Let $P \subset \mathbb{R}^d$ be a polytope.

Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule.

Monotone path polytope $\Sigma_c(P)$ [BS92]: Fiber polytope of $P \xrightarrow{\pi} Q$ with Q a segment. (Can be seen as a Minkowski sum of sections of P.) The vertices of $\Sigma_c(P)$ are all coherent monotone paths.

Coherent arborescence: An arborescence that can be obtained via the shadow vertex rule.

Pivot rule polytope $\Pi_c(P)$: Polytope which vertices are all coherent arborescences.

$$\Pi_c(P) = \text{conv} \left\{ \sum_{v \neq v_{\text{opt}}} \frac{1}{\langle c, A(v) - v \rangle} (A(v) - v); A \text{ coherent arbo. of } P \right\}$$
Case of the d-simplex
Case of the d-simplex

\[\omega \]

\[\omega \]

\[c \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]
Case of the d-simplex
Case of the d-simplex
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplicies
Case of the d-simplex

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\omega
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\omega
\]
Case of the d-simplex
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplices 7 / 24
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplicies
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplicies 7 / 24
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplicies
Case of the d-simplex

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]
Case of the d-simplex
Case of the d-simplex
Case of the d-simplex
Case of the d-simplex

\begin{align*}
\omega & = (1, 2, 3, 4) \\
\omega & = (1, 2, 3, 4) \\
\omega & = (1, 2, 3, 4)
\end{align*}
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplices 7 / 24
Case of the d-simplex

\[\omega \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array} \]
Case of the d-simplex
Case of the d-simplex
Case of the d-simplex

\[\omega \]

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplices
Case of the d-simplex

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array} \]
Case of the d-simplex
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplicies 7 / 24
Case of the d-simplex
Case of the d-simplex

\[\begin{align*}
\omega &\cdot 1 \\
\omega &\cdot 2 \\
\omega &\cdot 3 \\
\omega &\cdot 4 \\
1 &\cdot 1 \\
1 &\cdot 2 \\
1 &\cdot 3 \\
1 &\cdot 4 \\
2 &\cdot 1 \\
2 &\cdot 2 \\
2 &\cdot 3 \\
2 &\cdot 4 \\
3 &\cdot 1 \\
3 &\cdot 2 \\
3 &\cdot 3 \\
3 &\cdot 4 \\
4 &\cdot 1 \\
4 &\cdot 2 \\
4 &\cdot 3 \\
4 &\cdot 4
\end{align*} \]
Case of the d-simplex
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplices 7 / 24
Case of the d-simplex
Case of the d-simplex

V. Pilaud, G. Poullot, R. Sanyal

Pivot polytope of product of simplices
Case of the d-simplex

Pivot rule fan $\pi_c(P)$:

$\omega \sim \omega'$ iff $A^\omega = A^{\omega'}$.

This gives a polytopal fan [BDLLS22] (see above).
Case of the d-simplex

Pivot rule fan $\pi_c(P)$:

$\omega \sim \omega'$ iff $A^\omega = A^{\omega'}$.

This gives a polytopal fan [BDLLS22] (see above).
The pivot rule fan refines the monotone path fan.
Case of the d-simplex

Pivot rule fan $\pi_c(P)$:
$\omega \sim \omega'$ iff $A^\omega = A^\omega'$. This gives a polytopal fan [BDLLS22] (see above).
The pivot rule fan refines the monotone path fan.

For any d-simplex Δ_d, any c:

$$\Sigma_c(\Delta_d) = \text{Cube}_{d-1}$$
$$\Pi_c(\Delta_d) = \text{Asso}_d$$
Case of the d-simplex

Pivot rule fan $\pi_c(P)$:

$\omega \sim \omega'$ iff $A^\omega = A^{\omega'}$.

This gives a polytopal fan [BDLLS22] (see above).

The pivot rule fan refines the monotone path fan.

For any d-simplex Δ_d, any c:

$$\Sigma_c(\Delta_d) = \text{Cube}_{d-1},$$

$$\Pi_c(\Delta_d) = \text{Asso}_d$$

$\Sigma_c(\Delta_d)$ [BS92]:

A monotone path $= (v_0, \text{part of the vertices}, v_{opt})$.

Choosing a monotone path $= $ Choosing a part of the $(d-1)$-remaining vertices.

Exercise: Prove all such paths are coherent.
Coherent arborescence: An arborescence that can be obtained via the shadow vertex rule.

Pivot rule polytope $\Pi_c(P)$: Polytope which vertices are all coherent arborescences. Can also be seen as a Minkowski sum of sections:

$$\sum_{v \in V(P)} (\text{section between } v \text{ and its improving neighbors})$$
Poset of slopes
Fix \(P \), \(c \). \(n \) vertices \(V(P) \), \(m \) edges \(E(P) \), dimension \(d \).
Shadow vertex rule: \(A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; \ u \ \text{impr. neig. of} \ v \right\} \).

For \(\omega \), what is important? (to compute \(A^\omega \))
Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.

Shadow vertex rule: $A^\omega(v) = \text{argmax} \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The \textit{slopes}: $\tau^\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$
Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.
Shadow vertex rule: $A^\omega(v) = \text{argmax} \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle} ; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The \textit{slopes}: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow \textit{Slope vector}: $\theta(\omega) = (\tau_\omega(u, v); uv \text{ improving edge of } P) \in \mathbb{R}^m$
Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.

Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The slopes: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow Slope vector: $\theta(\omega) = (\tau_\omega(u, v); uv \text{ improving edge of } P) \in \mathbb{R}^m$

θ is a linear map $\mathbb{R}^d \to \mathbb{R}^m$, injective
Slope comparisons

Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d. Shadow vertex rule: $A^\omega(v) = \operatorname{argmax} \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle} ; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The slopes: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow Slope vector: $\theta(\omega) = (\tau_\omega(u, v) ; \text{ } uv \text{ improving edge of } P) \in \mathbb{R}^m$

θ is a linear map $\mathbb{R}^d \to \mathbb{R}^m$, injective

What is really important??
Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.

Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The *slopes*: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow *Slope vector*: $\theta(\omega) = (\tau_\omega(u, v); uv \text{ improving edge of } P) \in \mathbb{R}^m$

θ is a linear map $\mathbb{R}^d \rightarrow \mathbb{R}^m$, injective

What is really important?? The comparisons of slopes!
Slope comparisons

Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.
Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; \text{u impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The slopes: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow Slope vector: $\theta(\omega) = (\tau_\omega(u, v); \text{uv improving edge of } P) \in \mathbb{R}^m$
θ is a linear map $\mathbb{R}^d \rightarrow \mathbb{R}^m$, injective

What is really important?? The comparisons of slopes!

Slope pre-order of ω:

ground set : $E(P)$
relations : $uv \preceq_\omega u'v'$ \iff $\tau_\omega(u, v) \leq \tau_\omega(u', v')$
Slope comparisons

Fix P, c. n vertices $V(P)$, m edges $E(P)$, dimension d.
Shadow vertex rule: $A^\omega(v) = \arg\max \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}$.

For ω, what is important? (to compute A^ω)

The slopes: $\tau_\omega(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$

\Rightarrow Slope vector: $\theta(\omega) = (\tau_\omega(u, v); \ uv \text{ improving edge of } P) \in \mathbb{R}^m$
θ is a linear map $\mathbb{R}^d \rightarrow \mathbb{R}^m$, injective

What is really important?? The comparisons of slopes!

Slope pre-order of ω:

- ground set: $E(P)$
- relations: $uv \preceq^\omega u'v' \iff \tau_\omega(u, v) \leq \tau_\omega(u', v')$

\Rightarrow Where is $\theta(\omega)$ in the braid fan (i.e. compare its coordinates)?
Case of the d-cube

Cube: $P = \Box_d = [0, 1]^d$

$d2^{d-1}$ edges
Case of the d-cube

Cube: $P = \square_d = [0, 1]^d$

$d2^{d-1}$ edges, **but** d classes of parallelism of edges!
Case of the d-cube

Cube: $P = \Box_d = [0, 1]^d$

$d2^{d-1}$ edges, but d classes of parallelism of edges!

$\overline{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges
Case of the d-cube

Cube: $P = \square_d = [0, 1]^d$

$d2^{d-1}$ edges, but d classes of parallelism of edges!

$\bar{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges

$\bar{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ linear
Case of the d-cube

Cube: $P = \square_d = [0, 1]^d$

$d2^{d-1}$ edges, but d classes of parallelism of edges!

$\overline{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges

$\overline{\theta} : \mathbb{R}^d \to \mathbb{R}^d$ linear + injective
Case of the d-cube

Cube: $P = □_d = [0,1]^d$

$d2^{d-1}$ edges, but d classes of parallelism of edges!

$\overline{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges

$\overline{\theta} : \mathbb{R}^d \to \mathbb{R}^d$ linear + injective \Rightarrow automorphism, and \preceq_ω is a permutation of $\{1, \ldots, d\}$ that fully describes A^ω
Case of the d-cube

Cube: $P = \Box_d = [0, 1]^d$

$d2^{d-1}$ edges, but d classes of parallelism of edges!

$\overline{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges

$\overline{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ linear + injective \Rightarrow automorphism,

and \preceq_{ω} is a permutation of $\{1, \ldots, d\}$ that fully describes A^ω

Moreover, bijection: $A^\omega \leftrightarrow$ permutations $\{1, \ldots, d\}$
Case of the d-cube

Cube: $P = \Box_d = [0, 1]^d$

d2^d-1 edges, \textbf{but} d classes of parallelism of edges!

$\overline{\theta}(\omega) = \theta(\omega)$ restricted to d non-parallel edges

$\overline{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ linear + injective \Rightarrow automorphism,

and \preceq_ω is a permutation of $\{1, \ldots, d\}$ that fully describes A^ω

Moreover, bijection: $A^\omega \leftrightarrow$ permutations $\{1, \ldots, d\}$

$\Rightarrow \Pi_c(\Box_d)$ is a permutahedron
Case of the d-cube
Generalized permutahedra

Braid fan: Fan of the hyperplane arrangement $H_{i,j} = \{ x ; x_i = x_j \}$

![Diagram of braid fan]

Coarsening: Choose maximal cones and merge them

Generalized permutahedra: P whose normal fan coarsens B_n (permutahedron, associahedron, cube, hypersimplex...), each face associates to a poset on $[n]$

$\mathcal{P}(P)$: all the posets associated to faces of P
Aim: Link pivot polytopes with generalized permutahedra.

Hint:

\[\Pi_c(\square_d) = \text{Perm}_d \]
\[\Pi_c(\Delta_d) = \text{Asso}_d \]

Comparison of slopes is comparison of coordinates \(\Rightarrow \) braid fan
Idea 1:
Fix a polytope P, and direction c, n vertices, m edges.

$\theta : \mathbb{R}^d \to \mathbb{R}^m$ sends the pivot fan inside $\text{Im}(\theta) \cap \mathcal{B}_m$
Idea 1:
Fix a polytope P, and direction c, n vertices, m edges.

$\theta : \mathbb{R}^d \to \mathbb{R}^m$ sends the pivot fan inside $\text{Im}(\theta) \cap B_m$

Problem: This is not a braid fan as $d << m$...
Mimicking the case of the \(d \)-cube

\textit{Idea 1:}

Fix a polytope \(P \), and direction \(c \), \(n \) vertices, \(m \) edges.

\(\theta : \mathbb{R}^d \to \mathbb{R}^m \) sends the pivot fan inside \(\text{Im}(\theta) \cap \mathcal{B}_m \)

\textit{Problem:} This is not a braid fan as \(d << m \)...

If \(m' \) classes of parallelism:

\(\overline{\theta} : \mathbb{R}^d \to \mathbb{R}^{m'} \) sends the pivot fan inside \(\text{Im}(\theta) \cap \mathcal{B}_{m'} \)
Mimicking the case of the d-cube

Idea 1:
Fix a polytope P, and direction c, n vertices, m edges.

$$\theta : \mathbb{R}^d \to \mathbb{R}^m$$

sends the pivot fan inside $\text{Im}(\theta) \cap B_m$

Problem: This is not a braid fan as $d << m$...

If m' classes of parallelism:

$$\bar{\theta} : \mathbb{R}^d \to \mathbb{R}^{m'}$$

sends the pivot fan inside $\text{Im}(\theta) \cap B_{m'}$

Problem: This is not a braid fan as $d << m' < m$...
Mimicking the case of the d-cube

Idea 1:
Fix a polytope P, and direction c, n vertices, m edges.

$\theta : \mathbb{R}^d \rightarrow \mathbb{R}^m$ sends the pivot fan inside $\text{Im}(\theta) \cap \mathcal{B}_m$

Problem: This is not a braid fan as $d << m$...

If m' classes of parallelism:

$\overline{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}^{m'}$ sends the pivot fan inside $\text{Im}(\theta) \cap \mathcal{B}_{m'}$

Problem: This is not a braid fan as $d << m' < m$...

We need to go lower dimensional!
Idea 2:
Fix a polytope P, direction c, n vertices, m edges.
Fix A arborescence:
$\vartheta_A(\omega) = (\tau_\omega(u, A(u)) ; u \text{ vertex})$
Idea 2: Fix a polytope P, direction c, n vertices, m edges. Fix A arborescence:
$\vartheta_A(\omega) = (\tau_\omega(u, A(u)) ; u \text{ vertex})$

ϑ_A: linear, injective, $\mathbb{R}^d \rightarrow \mathbb{R}^{n-1}$

but if ω does not capture A, then $\vartheta_A(\omega)$ have no meaning...
Idea 2:
Fix a polytope P, direction c, n vertices, m edges.

Fix A arborescence:
\[\vartheta_A(\omega) = (\tau_\omega(u, A(u)) ; u \text{ vertex}) \]

ϑ_A: linear, injective, $\mathbb{R}^d \rightarrow \mathbb{R}^{n-1}$

but if ω does not capture A, then $\vartheta_A(\omega)$ have no meaning...

Adapted slope map: $\vartheta(\omega) = \vartheta_A(\omega)$
i.e. take ω and look at the slope of the edges it selects.
Idea 2:
Fix a polytope P, direction c, n vertices, m edges.

Fix A arborescence:
$$
\vartheta_A(\omega) = (\tau_\omega(u, A(u)) ; u \text{ vertex})
$$

ϑ_A: linear, injective, $\mathbb{R}^d \rightarrow \mathbb{R}^{n-1}$

but if ω does not capture A, then $\vartheta_A(\omega)$ have no meaning...

Adapted slope map:
$$
\vartheta(\omega) = \vartheta_A \omega(\omega)
$$
i.e. take ω and look at the slope of the edges it selects.

ϑ: piece-wise linear, injective, $\mathbb{R}^d \rightarrow \mathbb{R}^{n-1}$
i.e. ϑ sends the pivot fan inside $\text{Im}(\vartheta) \cap \mathcal{B}_{n-1}$

What if $d = n - 1$?
Pivot rule polytope of products of simplices
Case of the d-simplex

\[d = n - 1 \iff \text{P is a simplex} \]
Case of the d-simplex

\[d = n - 1 \iff P \text{ is a simplex} \]

For Δ_d: $\vartheta : \mathbb{R}^d \to \mathbb{R}^d$ piece-wise linear, $\ker \vartheta = \{0\}$
Case of the d-simplex

\[d = n - 1 \iff P \text{ is a simplex} \]

For Δ_d: $\vartheta : \mathbb{R}^d \rightarrow \mathbb{R}^d$ piece-wise linear, $\ker \vartheta = \{0\} \Rightarrow \text{bijection}$
Case of the \(d \)-simplex

\[
d = n - 1 \iff \text{P is a simplex}
\]

For \(\Delta_d \): \(\vartheta : \mathbb{R}^d \to \mathbb{R}^d \) piece-wise linear, \(\ker \vartheta = \{0\} \Rightarrow \) bijection \(\vartheta \) sends the pivot fan of \(\Delta_d \) inside \(B_d \).
Theorem (Pivot polytope simplex)

For all simplex, all (generic) direction: $\Pi_c(\Delta_d) \simeq \text{Asso}_d$.

Already in [BDLLSon], but new proof.

Proof
1) ϑ is piece-wise linear & bijective: pivot fan corsens B_d.
Theorem (Pivot polytope simplex)

For all simplex, all (generic) direction: \(\Pi_c(\Delta_d) \cong \text{Asso}_d \).

Already in [BDLLSon], but new proof.

Proof
1) \(\vartheta \) is piece-wise linear & bijective: pivot fan corsens \(B_d \).
2) Look at each permutation \(\sigma \): two \(\sigma \) ”capture” same \(A \) iff same binary (search) tree.

Theorem (Pivot polytope standard cube)

For standard cubes, all (generic) direction: \(\Pi_c(\mathbf{d}) \cong \text{Perm}_d \).

Already in [BDLLS22], but new proof.
Theorem (Pivot polytope simplex)

For all simplex, all (generic) direction: $\Pi_c(\Delta_d) \simeq \text{Asso}_d$.

Already in [BDLLSon], but new proof.

Proof

1) ϑ is piece-wise linear & bijective: pivot fan corsens B_d.
2) Look at each permutation σ: two σ ”capture” same A iff same binary (search) tree.
3) $\Pi_c(\Delta_d)$ sent to Asso_d by ϑ.
Theorem (Pivot polytope simplex)

For all simplex, all (generic) direction: $\Pi_c(\Delta_d) \simeq \text{Asso}_d$.

Already in [BDLLSon], but new proof.

Proof
1) ϑ is piece-wise linear & bijective: pivot fan corsens B_d.
2) Look at each permutation σ: two σ ”capture” same A iff same binary (search) tree.
3) $\Pi_c(\Delta_d)$ sent to Asso_d by ϑ.

Theorem (Pivot polytope standard cube)

For standard cubes, all (generic) direction: $\Pi_c(\Box_d) \simeq \text{Perm}_d$.

Already in [BDLLS22], but new proof.
Remark: $\square_d = [0, 1]^d = \Delta_1 \times \cdots \times \Delta_1$.
Remark: \(\Box_d = [0,1]^d = \Delta_1 \times \cdots \times \Delta_1 \).

What if \(P = \Delta_{d_1} \times \cdots \times \Delta_{d_r} \)?
Remark: \(\square_d = [0, 1]^d = \Delta_1 \times \cdots \times \Delta_1 \).

What if \(P = \Delta_{d_1} \times \cdots \times \Delta_{d_r} \)?

Problem: \(\vartheta : \mathbb{R}^d \to \mathbb{R}^{n-1} \), but \(n = \prod_i (d_i + 1) \neq d + 1 \)
Remark: \(\Box_d = [0, 1]^d = \Delta_1 \times \cdots \times \Delta_1 \).

What if \(P = \Delta_{d_1} \times \cdots \times \Delta_{d_r} \)?

Problem: \(\vartheta : \mathbb{R}^d \to \mathbb{R}^{n-1} \), but \(n = \prod_i (d_i + 1) \neq d + 1 \)

Quotient by parallelisms: \(\overline{\vartheta} = \vartheta \) restricted to parallelism classes

\(\overline{\vartheta} : \mathbb{R}^d \to \mathbb{R}^d \), piece-wise linear, \(\ker \overline{\vartheta} = \{0\} \), \(\Rightarrow \) bijective
Remark: $\square_d = [0, 1]^d = \Delta_1 \times \cdots \times \Delta_1$.

What if $P = \Delta_{d_1} \times \cdots \times \Delta_{d_r}$?

Problem: $\vartheta : \mathbb{R}^d \rightarrow \mathbb{R}^{n-1}$, **but** $n = \prod_i (d_i + 1) \neq d + 1$

Quotient by parallelisms: $\overline{\vartheta} = \vartheta$ restricted to parallelism classes

$\overline{\vartheta} : \mathbb{R}^d \rightarrow \mathbb{R}^d$, piece-wise linear, ker $\overline{\vartheta} = \{0\}, \Rightarrow$ bijective

Lemma (First conclusion)

$\overline{\vartheta}$ sends pivot fan of $\Delta_{d_1} \times \cdots \times \Delta_{d_r}$ inside \mathcal{B}_d, i.e.

$\Pi_c(\Delta_{d_1} \times \cdots \times \Delta_{d_r})$ is a generalized permutahedra.
Remark: $\square_d = [0, 1]^d = \Delta_1 \times \cdots \times \Delta_1$.

What if $P = \Delta_{d_1} \times \cdots \times \Delta_{d_r}$?

Problem: $\vartheta : \mathbb{R}^d \to \mathbb{R}^{n-1}$, but $n = \prod_i (d_i + 1) \neq d + 1$

Quotient by parallelisms: $\overline{\vartheta} = \vartheta$ restricted to parallelism classes

$\overline{\vartheta} : \mathbb{R}^d \to \mathbb{R}^d$, piece-wise linear, $\ker \overline{\vartheta} = \{0\}$, \Rightarrow bijective

Lemma (First conclusion)

$\overline{\vartheta}$ sends pivot fan of $\Delta_{d_1} \times \cdots \times \Delta_{d_r}$ inside B_d, i.e.

$\Pi_c(\Delta_{d_1} \times \cdots \times \Delta_{d_r})$ is a generalized permutahedra.

Now: identify the coarsening.
Shuffle: \((E, \preceq)\) and \((F, \preceq)\) posets, then \(\preceq\) is a shuffle when:

- **ground set**: \(E \sqcup F\)
- **relations**: all relations of \(\preceq\); all relations of \(\preceq\);
- for each \(e \in E, f \in F\), choose if \(e \preceq f\) or \(e \succ f\)
- (+ transitive closure)
Shuffles: \((E, \leq)\) and \((F, \preceq)\) posets, then \(\triangleleft\) is a shuffle when:

- **ground set:** \(E \sqcup F\)
- **relations:** all relations of \(\leq\); all relations of \(\preceq\);
 for each \(e \in E, f \in F\), choose if \(e \triangleleft f\) or \(e \triangleright f\)
 (+ transitive closure)

Theorem (Shuffle product [CP22])

\(P, Q\): generalized permutahedra. There exists polytope \(P \star Q\) s.t.
\(\mathcal{P}(P \star Q) = \{\text{all shuffles between } \leq \in \mathcal{P}(P) \text{ and } \preceq \in \mathcal{P}(Q)\}\)
Theorem (Pivot polytope of products of simplices)

For $\Delta_{d_1} \times \cdots \times \Delta_{d_r}$, all (generic) direction, via ϑ:

$$\Pi_c(\Delta_{d_1} \times \cdots \times \Delta_{d_r}) \simeq \text{Asso}_{d_1} \star \cdots \star \text{Asso}_{d_r}$$
Theorem (Pivot polytope of products of simplices)

For $\Delta_{d_1} \times \cdots \times \Delta_{d_r}$, all (generic) direction, via $\overline{\vartheta}$:

$$\Pi_c(\Delta_{d_1} \times \cdots \times \Delta_{d_r}) \simeq \text{Asso}_{d_1} \ast \cdots \ast \text{Asso}_{d_r}$$

Example

(a) $\Pi_c(\square_d) \simeq \text{Perm}_d$
(b) $\Pi_c(\square_m \times \Delta_n) \simeq (m, n)$-multiplihedron
(c) $\Pi_c(\Delta_m \times \Delta_n) \simeq (m, n)$-constrainahedron
1) Is $\Pi_c(P)$ projection of a generalized permutahedron?
\rightarrow pivot fan sent inside $\text{Im}(\bar{\theta}) \cap B_{m'}$

2) For which P, $\Pi_c(P)$ is a generalized permutahedron?
\rightarrow a priori, only products of simplices, but no proof

3) When $\Pi_c(P)$ and $\Pi_c(Q)$ are not generalized permutahedra, then what happen to $\Pi_c(P \times Q)$?
\rightarrow not equivalent to $\Pi_c(P) \star \Pi_c(Q)$, but "embeds" in it

Thank you!
The polyhedral geometry of pivot rules and monotone paths, 2022.

On the geometric combinatorics of pivot rules.
in preparation.

Louis J. Billera and Bernd Strumfels.
Fiber polytopes.

Frédéric Chapoton and Vincent Pilaud.
Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, 2022.
\LaTeX{} was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it. If you rerun the document (without altering it) this surplus page will go away, because \LaTeX{} now knows how many pages to expect for this document.