Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・西ト・ヨト・ヨー シック

 Tam_n is the set of the binary trees with *n* inner vertices

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本

Tam_n is the set of the binary trees with n inner vertices ordered by 'right rotation'.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Tam_n is the set of the binary trees with n inner vertices ordered by 'right rotation'.

FIGURE – Right rotation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Tam_n is the set of the binary trees with n inner vertices ordered by 'right rotation'.

FIGURE – Right rotation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Coxeter matrix $C = -I \cdot (I^{-1})^t$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Tam_n is the set of the binary trees with n inner vertices ordered by 'right rotation'.

 $\ensuremath{\operatorname{Figure}}$ – Right rotation.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Coxeter matrix $C = -I \cdot (I^{-1})^t$.

Theorem (Chapoton 2007, R-2020)

The Coxeter matrix of Tam_n satisfies $C^{2n+2} = Id$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

- Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.
 - \blacktriangleright **k***X* a **k**-vector space with basis *X*.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k***X* a **k**-vector space with basis *X*.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k***X* a **k**-vector space with basis *X*.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k***X* a **k**-vector space with basis *X*.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$ et $I_x = \sum_{y \le x} S_y$.
- Simples, projectives, injectives.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k**X a **k**-vector space with basis X.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$ et $I_x = \sum_{y \le x} S_y$.
- Simples, projectives, injectives.
- The Coxeter transformation : Θ : $\mathbf{k}X \to \mathbf{k}X$ where $\Theta(P_x) = -I_x$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k**X a **k**-vector space with basis X.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$ et $I_x = \sum_{y \le x} S_y$.
- Simples, projectives, injectives.
- The Coxeter transformation : Θ : $\mathbf{k}X \to \mathbf{k}X$ where $\Theta(P_x) = -I_x$.
- $\triangleright \Theta$ represent -Id.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- \blacktriangleright **k**X a **k**-vector space with basis X.
- Canonical basis $S_x = (0, \cdots, 0, 1, 0, \cdots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$ et $I_x = \sum_{y \le x} S_y$.
- Simples, projectives, injectives.
- The Coxeter transformation : Θ : $\mathbf{k}X \to \mathbf{k}X$ where $\Theta(P_x) = -I_x$.
- Θ represent -Id. In the basis S, its matrix is the Coxeter matrix.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Let (X, \leq) be a finite poset (e.g. Tam_n) and **k** a field.

- **k**X a **k**-vector space with basis X.
- Canonical basis $S_x = (0, \dots, 0, 1, 0, \dots 0)$.
- Two 'triangular' basis : $P_x = \sum_{x \le y} S_y$ et $I_x = \sum_{y \le x} S_y$.
- Simples, projectives, injectives.
- The Coxeter transformation : Θ : $\mathbf{k}X \to \mathbf{k}X$ where $\Theta(P_x) = -I_x$.
- During the rest of the talk I will work with −Θ!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional ntervals

Marginal intervals

うしん 同一人用 人用 人名 マート

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

2

0

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・(四ト・(日下・(日下・))の(の)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

2

0

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry

of the Tamari lattices

Baptiste Rognerud Hidden symmetry

- Two orbits of size 8 and 4.
- 12 intervals of Tam₃

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional Intervals

- Two orbits of size 8 and 4.
- ▶ 12 intervals of Tam₃ out of the 13 intervals!

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・日本

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・(四ト・(日下・(日下・))の(の)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・(四ト・(日下・(日下・))の(の)

Exceptional intervals (i)

Interval-poset on [n]: is a poset on $\{1, \dots, n\}$ such that

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本
Interval-poset on [n]: is a poset on $\{1, \dots, n\}$ such that

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本・今日・

Interval-poset on [n]: is a poset on $\{1, \dots, n\}$ such that

i j k a b c

Theorem (Châtel-Pons 2015)

There is a bijection between the intervals of Tam_n and the interval-posets on [n].

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Interval-poset on [n]: is a poset on $\{1, \dots, n\}$ such that

i j k a b c

Theorem (Châtel-Pons 2015)

There is a bijection between the intervals of Tam_n and the interval-posets on [n].

Definition

An interval-poset is exceptional if it does not have

in its Hasse diagram.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Definition

An interval-poset is exceptional if it does not have

in its Hasse diagram.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Definition

An interval-poset is exceptional if it does not have

in its Hasse diagram.

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative triangle $NCT_n \xrightarrow{C} Int(Tam_n)$ $1:1 \xrightarrow{CP} Int(Tam_n)$ Exc-IP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

NCT_n = non crossing trees,
$$|\text{Exc-IP}| = \frac{1}{2n+1} {3n \choose n}$$
.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

NCT_n = non crossing trees, $|\text{Exc-IP}| = \frac{1}{2n+1} {3n \choose n}$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

< ∃⇒

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

The hidden symmetry

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

Theorem (R-2020)

Let $T \in NCT_n$. Then,

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

The hidden symmetry

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

Theorem (R-2020)

Let $T \in NCT_n$. Then, • $\Theta(C(T)) = (-1)^{n_T} C(T^*)$ for some integer n_T . Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

The hidden symmetry

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

Theorem (R-2020)

Let $T \in NCT_n$. Then,

• $\Theta(C(T)) = (-1)^{n_T} C(T^*)$ for some integer n_T .

• $\Theta^2(C(T)) = (-1)^{m_T} C(\operatorname{Rot}_{\frac{2\pi}{n+1}} T)$ for some integer m_T .

イロト (四) (日) (日) (日) (日) (日)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

• mod A_n = fillings of the tableau

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

• mod A_n = fillings of the tableau

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

▶ We only consider fillings with 0 and 1.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

• mod A_n = fillings of the tableau

▶ We only consider fillings with 0 and 1.

To define a (full) subcategory of mod A_n we just have to choose a set of 'authorized' boxes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

• mod A_n = fillings of the tableau

• We only consider fillings with 0 and 1.

- To define a (full) subcategory of mod A_n we just have to choose a set of 'authorized' boxes.
- Draw on board surjection, injection and extensions

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

k field, $A_n = 1 < 2 < \cdots < n$, **k** A_n its incidence algebra.

• mod A_n = fillings of the tableau

• We only consider fillings with 0 and 1.

- To define a (full) subcategory of mod A_n we just have to choose a set of 'authorized' boxes.
- Draw on board surjection, injection and extensions
- A torsion class is a subcategory closed by image of surjections and extensions.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

A torsion class is a subcategory closed by image of surjections and extensions.

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Example of A_2 .

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

= nar

- A torsion class is a subcategory closed by image of surjections and extensions.
- Example of A_2 .
- ► $(\operatorname{Tors}(A_n), \subseteq) \cong \operatorname{Tam}_{n+1}$ (via brackets vectors).

Binary tree T with n inner vertices induces a module for A_n by placing it on the tableau (Gabriel 1981). Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

- Binary tree T with n inner vertices induces a module for A_n by placing it on the tableau (Gabriel 1981).
- It is a tilting module : $Ext^1(T, T) = 0$ and |T| = n.

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

- Binary tree T with n inner vertices induces a module for An by placing it on the tableau (Gabriel 1981).
 It is a tilting module of Ext¹(T, T) = 0 and |T|.
- It is a tilting module : $Ext^1(T, T) = 0$ and |T| = n.
- ► Example of A₃.

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

- Binary tree T with n inner vertices induces a module for A_n by placing it on the tableau (Gabriel 1981).
 It is a tilting module : Ext¹(T, T) = 0 and |T| = n.
- ► Example of A₃.

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・日本・西本・山田・山田・山口

Example of A₃.

▶ Poset $T_1 \leq T_2$ if $Fac(T_1) \subseteq Fac(T_2)$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

- Tilt(A_n) \cong Tam_n (via binary trees).
- ▶ Tilt(A_n) \cong Tam_n is an interval in Tors(A_n) \cong Tam_{n+1}.
- Example of A₃.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

▶ Poset $T_1 \leq T_2$ if $Fac(T_1) \subseteq Fac(T_2)$.

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1, 2, \dots, n)$ as product of transpositions

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・日本・日本・日本

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1, 2, \dots, n)$ as product of transpositions and with exceptional collections of mod A_n

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1, 2, \dots, n)$ as product of transpositions and with exceptional collections of mod A_n (can be generalized to any *Dynkin quiver* and any hereditary algebra).

Theorem (R- 2023)

There is a commutative square of injections and bijections

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1, 2, \dots, n)$ as product of transpositions and with exceptional collections of mod A_n (can be generalized to any *Dynkin quiver* and any hereditary algebra).

Theorem (R- 2023)

There is a commutative square of injections and bijections

$$\begin{array}{ccc} \mathsf{NCT}_n & \xrightarrow{C} & \mathsf{Int}(\mathsf{Tam}_n) \\ & & & & & \\ \mathsf{Araya} & & & & \\ \mathsf{Araya} & & & & \\ \mathsf{I:1} & & & & & \\ \mathsf{Exc}(A_n) & \xrightarrow{DR} & & \mathsf{Int}(\mathsf{Tilt}(A_n)) \end{array}$$

DR sends an exceptional collection \mathcal{E} to $\mathbb{I}_{\mathcal{E}} = [I_{\mathcal{E}}, P_{\mathcal{E}}]$ where $I_{\mathcal{E}}$ and $P_{\mathcal{E}}$ are the minimal injective cogenerator and projective generator of the category $\mathcal{F}(\mathcal{E})$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

An example

Hidden symmetry of the Tamari lattices

Theorem (R 2018,2023)

For an interval I of Tam_n, TFAE

- I is in the image of C.
- I is in the image of DR.
- ► The interval-poset of I is exceptional.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Theorem (R 2018,2023)

For an interval I of Tam_n, TFAE

- I is in the image of C.
- ▶ I is in the image of DR.
- ► The interval-poset of I is exceptional.
- I is an interval of Kreweras :

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Theorem (R 2018,2023)

For an interval I of Tam_n , TFAE

- ► I is in the image of C.
- I is in the image of DR.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras : T₁ ≺ T₂ if and only if [T₁, T₂] is exceptional. Then (Tam_n, ≺) is isomorphic to the poset of noncrossing partitions on [n].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_n , TFAE

- I is in the image of C.
- I is in the image of DR.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras : T₁ ≺ T₂ if and only if [T₁, T₂] is exceptional. Then (Tam_n, ≺) is isomorphic to the poset of noncrossing partitions on [n].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

I has n walls.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_n , TFAE

- ► I is in the image of C.
- I is in the image of DR.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras : T₁ ≺ T₂ if and only if [T₁, T₂] is exceptional. Then (Tam_n, ≺) is isomorphic to the poset of noncrossing partitions on [n].
- I has n walls.
- The walls of I form a complete exceptional collection.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_n , TFAE

- I is in the image of C.
- ▶ I is in the image of DR.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras : T₁ ≺ T₂ if and only if [T₁, T₂] is exceptional. Then (Tam_n, ≺) is isomorphic to the poset of noncrossing partitions on [n].
- I has n walls.
- ► The walls of I form a complete exceptional collection.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals
Theorem (DIRT, BCZ,A,...?)

The Tamari lattice Tam_n is semidistributive (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x ∧ y = x ∧ z and dual). Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Tam_n is semidistributive

Theorem (DIRT, BCZ,A,...?)

- The Tamari lattice Tam_n is semidistributive (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x ∧ y = x ∧ z and dual).
- There is a labelling of the edges of the Hasse diagram by the join-irreducibles :

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (DIRT, BCZ,A,...?)

- The Tamari lattice Tam_n is semidistributive (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x ∧ y = x ∧ z and dual).
- ▶ There is a labelling of the edges of the Hasse diagram by the join-irreducibles : If $S \le T$ is a cover relation, there is exactly one join-irreducible j that covers j_* such that $S \lor j = T$ and $S \lor j_* = S$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (DIRT, BCZ,A,...?)

- The Tamari lattice Tam_n is semidistributive (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x ∧ y = x ∧ z and dual).
- ▶ There is a labelling of the edges of the Hasse diagram by the join-irreducibles : If $S \le T$ is a cover relation, there is exactly one join-irreducible j that covers j_* such that $S \lor j = T$ and $S \lor j_* = S$.
- The join-irreducibles are in bijection with the intervals of [n] (the indecomposables modules of A_n.)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem (DIRT, BCZ,A,...?)

- The Tamari lattice Tam_n is semidistributive (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) whenever x ∧ y = x ∧ z and dual).
- ▶ There is a labelling of the edges of the Hasse diagram by the join-irreducibles : If $S \le T$ is a cover relation, there is exactly one join-irreducible j that covers j_* such that $S \lor j = T$ and $S \lor j_* = S$.
- The join-irreducibles are in bijection with the intervals of [n] (the indecomposables modules of A_n.)
- For torsion classes, $A \subseteq B$ is labelled by the unique interval I in B such that $Hom(X, I) = 0 \quad \forall X \in A$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Example of Tam₃

Hidden symmetry of the Tamari lattices

Example of Tam₃

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

idden symmetry

A Generalization of Famari

Exceptional intervals

Definition

Let *H* be a hereditary algebra and *I* be an interval of $Tilt(H) \subset Tors(H)$. The walls of *I* is the set of labels of the covers $X \to Y$ with exactly one of *X* and *Y* in *I*.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Definition

Let *H* be a hereditary algebra and *I* be an interval of $Tilt(H) \subset Tors(H)$. The walls of *I* is the set of labels of the covers $X \to Y$ with exactly one of *X* and *Y* in *I*.

For Tam_n : let I be an interval-poset on [n]. Let \hat{I} be the interval-poset on [n+1] obtained by adding n+1 as the greatest element.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ う へ や

Definition

Let *H* be a hereditary algebra and *I* be an interval of $Tilt(H) \subset Tors(H)$. The walls of *I* is the set of labels of the covers $X \to Y$ with exactly one of *X* and *Y* in *I*.

For Tam_n : let I be an interval-poset on [n]. Let \hat{I} be the interval-poset on [n+1] obtained by adding n+1 as the greatest element.

1 2 3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ う へ や

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Definition

Let *H* be a hereditary algebra and *I* be an interval of $Tilt(H) \subset Tors(H)$. The walls of *I* is the set of labels of the covers $X \to Y$ with exactly one of *X* and *Y* in *I*.

For Tam_n : let I be an interval-poset on [n]. Let \hat{I} be the interval-poset on [n+1] obtained by adding n+1 as the greatest element.

Walls of I are : 2, 3, 123 (incoming) and 1 (outgoing).

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Definition

Let *H* be a hereditary algebra and *I* be an interval of $Tilt(H) \subset Tors(H)$. The walls of *I* is the set of labels of the covers $X \to Y$ with exactly one of *X* and *Y* in *I*.

For Tam_n : let I be an interval-poset on [n]. Let \hat{I} be the interval-poset on [n+1] obtained by adding n+1 as the greatest element.

Walls of I are : 2, 3, 123 (incoming) and 1 (outgoing).

1 2 3 4

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

For Tam_n : let I be an interval-poset on [n]. Let \hat{I} be the interval-poset on [n+1] obtained by adding n+1 as the greatest element.

Walls of I are : 2, 3, 123 (incoming) and 1 (outgoing).

Theorem (R 2023)

There is a bijection between the walls of I and the cover relations of Î. Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Walls of *I* are : 2, 3, 123 (incoming) and 1 (outgoing).

Theorem (R 2023)

There is a bijection between the walls of I and the cover relations of Î.

The number of walls is n + the number of ordinary* configurations. Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Hidden symmetry (ii)

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative

Theorem (R 2020/2023)

The Coxeter transformation of Tam_n sends an exceptional interval I to C(Walls(I)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

extra wells	0	1	٢	3	ዛ	5	
ટ	3	_					
3	12	1					
Ч	55	12	1				
5	273	105	19	2			
6	9428	816	\$ 23	4 4 {	3 4		
7	775	2 598	<u>}</u> ५ २१	807	16 -12]	39	

Definition

An interval I of Tam_n is marginal if its number of walls is maximal (= 2n - 2).

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Definition

An interval I of Tam_n is marginal if its number of walls is maximal (= 2n - 2).

Theorem

There is a simple bijection between marginal intervals of Tam_n and Motzkin paths of length n - 3.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Definition

An interval I of Tam_n is marginal if its number of walls is maximal (= 2n - 2).

Theorem

There is a simple bijection between marginal intervals of Tam_n and Motzkin paths of length n - 3.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Theorem

There is a simple bijection between marginal intervals of Tam_n and Motzkin paths of length n - 3.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

・ロト・日本・ キョ・ キョ・ しょう

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

lidden symmetry

A Generalization of Tamari

Exceptional intervals