Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Setting

Tam $_{n}$ is the set of the binary trees with n inner vertices

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional

 intervalsMarginal intervals

Setting

Tam_{n} is the set of the binary trees with n inner vertices ordered by 'right rotation'.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional

intervals
Marginal intervals

Setting

Tam_{n} is the set of the binary trees with n inner vertices ordered by 'right rotation'.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

Tamari
Exceptional
intervals
Marginal intervals

Figure - Right rotation.

Setting

Tam_{n} is the set of the binary trees with n inner vertices ordered by 'right rotation'.

Figure - Right rotation.

Coxeter matrix $C=-I \cdot\left(I^{-1}\right)^{t}$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
Tamari
Eveentional
intervals
Marginal intervals

Setting

Tam_{n} is the set of the binary trees with n inner vertices ordered by 'right rotation'.

Figure - Right rotation.

Coxeter matrix $C=-I \cdot\left(I^{-1}\right)^{t}$.
Theorem (Chapoton 2007,R-2020)
The Coxeter matrix of Tam_{n} satisfies $C^{2 n+2}=I d$.

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam_{n}) and \mathbf{k} a field.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional

intervals
Marginal intervals

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam $\left._{n}\right)$ and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exeeptional intervals

Marginal intervals

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. $\left.\operatorname{Tam}_{n}\right)$ and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

```
Hidden symmetry
```

```
A Generalization of
```


Coxeter transformation

Let (X, \leq) be a finite poset (e.g. $\left.\operatorname{Tam}_{n}\right)$ and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$

Hidden symmetry of the Tamari lattices

Baptiste Rognerud
Hidden symmetry
A Gene
Exceptional intervals

Coxeter transformation
Let (X, \leq) be a finite poset (e.g. $\left.\operatorname{Tam}_{n}\right)$ and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$ et $I_{x}=\sum_{y \leq x} S_{y}$.
- Simples, projectives, injectives.

Hidden symmetry of the Tamari lattices

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam_{n}) and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$ et $I_{x}=\sum_{y \leq x} S_{y}$.
- Simples, projectives, injectives.
- The Coxeter transformation : $\Theta: \mathbf{k} X \rightarrow \mathbf{k} X$ where $\Theta\left(P_{x}\right)=-I_{x}$.

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam_{n}) and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$ et $I_{x}=\sum_{y \leq x} S_{y}$.
- Simples, projectives, injectives.
- The Coxeter transformation: $\Theta: \mathbf{k} X \rightarrow \mathbf{k} X$ where $\Theta\left(P_{x}\right)=-I_{x}$.
- Θ represent -ld.

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam_{n}) and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$ et $I_{x}=\sum_{y \leq x} S_{y}$.
- Simples, projectives, injectives.
- The Coxeter transformation: $\Theta: \mathbf{k} X \rightarrow \mathbf{k} X$ where $\Theta\left(P_{x}\right)=-I_{x}$.
- Θ represent -ld. In the basis S, its matrix is the Coxeter matrix.

Coxeter transformation

Let (X, \leq) be a finite poset (e.g. Tam_{n}) and \mathbf{k} a field.

- $\mathbf{k} X$ a \mathbf{k}-vector space with basis X.
- Canonical basis $S_{x}=(0, \cdots, 0,1,0, \cdots 0)$.
- Two 'triangular' basis : $P_{x}=\sum_{x \leq y} S_{y}$ et $I_{x}=\sum_{y \leq x} S_{y}$.
- Simples, projectives, injectives.
- The Coxeter transformation: $\Theta: \mathbf{k} X \rightarrow \mathbf{k} X$ where $\Theta\left(P_{x}\right)=-I_{x}$.
- Θ represent $-l d$. In the basis S, its matrix is the Coxeter matrix.
- During the rest of the talk I will work with $-\Theta$!

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional intervals

Marginal intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

 intervalsMarginal intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

 intervals
Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization O

 Tamari
Exceptional

 intervalsMarginal intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

 intervalsMarginal intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization o

 TamariExceptional intervals

Marginal intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional intervals

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional intervals

Marginal intervals

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Marginal intervals

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

intervals
Marginal intervals

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization o

 Tamari
Exceptional

 intervalsExample of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization O

 Tamari
Exceptional

 intervalsMarginal intervals

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional intervals

- Two orbits of size 8 and 4 .
- 12 intervals of Tam_{3}

Example of Tam_{3} (ii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Gene
Tamari
Exceptional intervals

- Two orbits of size 8 and 4 .
- 12 intervals of Tam_{3} out of the 13 intervals !

Example de Tam_{3} (iii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

 intervalsMarginal intervals

Example de Tam3 (iii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

 Tamari
Exceptional

 intervals
Example de Tam_{3} (iii)

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization o

 Tamari
Exceptional

 intervalsMarginal intervals

Exceptional intervals (i)

Interval-poset on $[n]$: is a poset on $\{1, \cdots, n\}$ such that

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional intervals

Marginal intervals

Exceptional intervals (i)

Interval-poset on $[n]$: is a poset on $\{1, \cdots, n\}$ such that

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals
Marginal intervals

Exceptional intervals (i)

Interval-poset on $[n]$: is a poset on $\{1, \cdots, n\}$ such that

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals
Marginal intervals

There is a bijection between the intervals of Tam_{n} and the interval-posets on [n].

Exceptional intervals (i)

Interval-poset on $[n]$: is a poset on $\{1, \cdots, n\}$ such that

Theorem (Châtel-Pons 2015)
There is a bijection between the intervals of Tam_{n} and the interval-posets on [n].

Definition

An interval-poset is exceptional if it does not have

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals

Exceptional intervals (ii)

Definition

An interval-poset is exceptional if it does not have

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals
Marginal intervals
in its Hasse diagram.

Exceptional intervals (ii)

Definition

An interval-poset is exceptional if it does not have

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Excentional
intervals
Marginal intervals
in its Hasse diagram.

Theorem (Chapoton, CNHT,R)
There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow[\text { Exc-IP }]{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

Exceptional intervals (ii)

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

$\mathrm{NCT}_{n}=$ non crossing trees, \mid Exc-IP $\left\lvert\,=\frac{1}{2 n+1}\binom{3 n}{n}\right.$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization o Tamari

Exceptional intervals

Marginal intervals

Exceptional intervals (ii)

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow[\text { Exc-IP }]{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$
$\mathrm{NCT}_{n}=$ non crossing trees, \mid Exc-IP $\left\lvert\,=\frac{1}{2 n+1}\binom{3 n}{n}\right.$.

Exceptional intervals
(ii)

Theorem (Chapoton, CNHT,R)
There are two injective maps, a bijection, a commutative

The hidden symmetry

Theorem (Chapoton, CNHT, R)
There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

Theorem (R-2020)
Let $T \in \mathrm{NCT}_{n}$. Then,

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization o

Tamari

Exceptional
intervals
Marginal intervals

The hidden symmetry

Theorem (Chapoton, CNHT, R)
There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

Theorem (R-2020)
Let $T \in \mathrm{NCT}_{n}$. Then,

- $\Theta(C(T))=(-1)^{n_{T}} C\left(T^{*}\right)$ for some integer n_{T}.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization O

Tamari

Exceptional
intervals
Marginal intervals

The hidden symmetry

Theorem (Chapoton, CNHT,R)
There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

Theorem (R-2020)
Let $T \in \mathrm{NCT}_{n}$. Then,

- $\Theta(C(T))=(-1)^{n_{T}} C\left(T^{*}\right)$ for some integer n_{T}.
- $\Theta^{2}(C(T))=(-1)^{m_{T}} C\left(\operatorname{Rot}_{\frac{2 \pi}{n+1}} T\right)$ for some integer m_{T}.

Baptiste Rognerud

Hidden symmetry
A Genari

Exceptional
intervals
Marginal intervals

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

Exceptional
intervals
Marginal intervals

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.
$-\bmod A_{n}=$ fillings of the tableau

$(1, n)$	$(2, n)$	$(3, n)$
$(1, n-1)$	$(2, n-1)$	$(3, n-1)$
$(1, n-2)$	$(2, n-2)$	

$(n-1, n)$
$(n-1, n-1)$

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

$(1,2)$	$(2,2)$
$(1,1)$	

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.
$-\bmod A_{n}=$ fillings of the tableau

$(1, n)$	$(2, n)$	$(3, n)$		$(n-1, n)$ (n, n) $(1, n-1)$ $(2, n-1)$ $(3, n-1)$ $(n-1, n-1)$	

Baptiste Rognerud

Hidden symmetry
A Generalization of Tamari

$(1,2)$	$(2,2)$
$(1,1)$	

- We only consider fillings with 0 and 1 .

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.
$-\bmod A_{n}=$ fillings of the tableau

(1, n)	(2,n)	$(3, n)$	($n-1, n$)	(n, n)
(1, $n-1$)	(2,n-1)	(3, $n-1$)	($n-1, n-1$)	
(1, $n-2$)	(2,n-2)			

$(1,2)$	$(2,2)$
$(1,1)$	

- We only consider fillings with 0 and 1 .
- To define a (full) subcategory of $\bmod A_{n}$ we just have to choose a set of 'authorized' boxes.

Baptiste Rognerud

A Generalization of Tamari

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.
- $\bmod A_{n}=$ fillings of the tableau

$(1, n)$	(2,n)	$(3, n)$	($n-1, n$)	(n, n)
(1, $n-1$)	(2,n-1)	(3, $n-1$)	($n-1, n-1$)	
(1, $n-2$)	(2,n-2)			

$(1,2)$	$(2,2)$
$(1,1)$	

- We only consider fillings with 0 and 1 .
- To define a (full) subcategory of $\bmod A_{n}$ we just have to choose a set of 'authorized' boxes.
- Draw on board surjection, injection and extensions

Via brackets vectors

- \mathbf{k} field, $A_{n}=1<2<\cdots<n, \mathbf{k} A_{n}$ its incidence algebra.
- $\bmod A_{n}=$ fillings of the tableau

$(1, n)$	$(2, n)$	$(3, n)$		$(n-1, n)$	(n, n)
$(1, n-1)$	$(2, n-1)$	$(3, n-1)$		$(n-1, n-1)$	
$(1, n-2)$	$(2, n-2)$				

$(1,2)$	$(2,2)$
$(1,1)$	

- We only consider fillings with 0 and 1 .
- To define a (full) subcategory of $\bmod A_{n}$ we just have to choose a set of 'authorized' boxes.
- Draw on board surjection, injection and extensions
- A torsion class is a subcategory closed by image of surjections and extensions.

Via brackets vectors

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional

intervals
Marginal intervals

- A torsion class is a subcategory closed by image of surjections and extensions.
- Example of A_{2}.

Via brackets vectors

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

- A torsion class is a subcategory closed by image of surjections and extensions.
- Example of A_{2}.
- $\left(\operatorname{Tors}\left(A_{n}\right), \subseteq\right) \cong \operatorname{Tam}_{n+1}$ (via brackets vectors).

Via binary trees

- Binary tree T with n inner vertices induces a module for A_{n} by placing it on the tableau (Gabriel 1981).

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Via binary trees

- Binary tree T with n inner vertices induces a module for A_{n} by placing it on the tableau (Gabriel 1981).
- It is a tilting module : $\operatorname{Ext}^{1}(T, T)=0$ and $|T|=n$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud Hidden symmetry

A Generalization of Tamari

Via binary trees

- Binary tree T with n inner vertices induces a module for A_{n} by placing it on the tableau (Gabriel 1981).
- It is a tilting module : $\operatorname{Ext}^{1}(T, T)=0$ and $|T|=n$.
- Example of A_{3}.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

A Generalization of Tamari

Via binary trees

- Binary tree T with n inner vertices induces a module for A_{n} by placing it on the tableau (Gabriel 1981).
- It is a tilting module : $\operatorname{Ext}^{1}(T, T)=0$ and $|T|=n$.
- Example of A_{3}.

Baptiste Rognerud

A Generalization of Tamari

Via binary trees

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

- Poset $T_{1} \leq T_{2}$ if $\operatorname{Fac}\left(T_{1}\right) \subseteq \operatorname{Fac}\left(T_{2}\right)$.

Via binary trees

- $\operatorname{Tilt}\left(A_{n}\right) \cong \operatorname{Tam}_{n}$ (via binary trees).
- $\operatorname{Tilt}\left(A_{n}\right) \cong \operatorname{Tam}_{n}$ is an interval in $\operatorname{Tors}\left(A_{n}\right) \cong \operatorname{Tam}_{n+1}$.
- Example of A_{3}.

- Poset $T_{1} \leq T_{2}$ if $\operatorname{Fac}\left(T_{1}\right) \subseteq \operatorname{Fac}\left(T_{2}\right)$.

Generalize the Chapoton map

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1,2, \cdots, n)$ as product of transpositions

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Generalize the Chapoton map

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1,2, \cdots, n)$ as product of transpositions and with exceptional collections of $\bmod A_{n}$

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Generalize the Chapoton map

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1,2, \cdots, n)$ as product of transpositions and with exceptional collections of $\bmod A_{n}$ (can be generalized to any Dynkin quiver and any hereditary algebra).

Theorem (R-2023)

There is a commutative square of injections and bijections

Generalize the Chapoton map

Noncrossing trees are in bijection with factorizations of the Coxeter element $(1,2, \cdots, n)$ as product of transpositions and with exceptional collections of $\bmod A_{n}$ (can be generalized to any Dynkin quiver and any hereditary algebra).

Theorem (R-2023)

There is a commutative square of injections and bijections

$D R$ sends an exceptional collection \mathcal{E} to $\mathbb{I}_{\mathcal{E}}=\left[I_{\mathcal{E}}, P_{\mathcal{E}}\right]$ where $I_{\mathcal{E}}$ and $P_{\mathcal{E}}$ are the minimal injective cogenerator and projective generator of the category $\mathcal{F}(\mathcal{E})$.

An example

$$
\begin{aligned}
& A=k(1 \rightrightarrows 2) \\
& T_{1} \|(A)=
\end{aligned}
$$

$$
\begin{aligned}
& E x c \\
& E-[x, y] \quad \forall x \in \operatorname{Vil}(A) \\
&-[I(0), P(01]
\end{aligned}
$$

Exceptional intervals

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry
A Generailization of

Tamari

Exceptional intervals

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_{n}, TFAE

- I is in the image of C.
- I is in the image of $D R$.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras :

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_{n}, TFAE

- I is in the image of C.
- I is in the image of $D R$.
- The interval-poset of I is exceptional.
- 1 is an interval of Kreweras: $T_{1} \prec T_{2}$ if and only if [T_{1}, T_{2}] is exceptional. Then $\left(\operatorname{Tam}_{n}, \prec\right)$ is isomorphic to the poset of noncrossing partitions on [n].

Baptiste Rognerud

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam_{n}, TFAE

- I is in the image of C.
- 1 is in the image of $D R$.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras: $T_{1} \prec T_{2}$ if and only if [T_{1}, T_{2}] is exceptional. Then $\left(\operatorname{Tam}_{n}, \prec\right)$ is isomorphic to the poset of noncrossing partitions on [n].
- I has n walls.

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam ${ }_{n}$, TFAE

- I is in the image of C.
- I is in the image of $D R$.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras: $T_{1} \prec T_{2}$ if and only if [T_{1}, T_{2}] is exceptional. Then ($\operatorname{Tam}_{n}, \prec$) is isomorphic to the poset of noncrossing partitions on [n].
- I has n walls.
- The walls of I form a complete exceptional collection.

Exceptional intervals

Theorem (R 2018,2023)

For an interval I of Tam ${ }_{n}$, TFAE

- I is in the image of C.
- I is in the image of $D R$.
- The interval-poset of I is exceptional.
- I is an interval of Kreweras: $T_{1} \prec T_{2}$ if and only if [T_{1}, T_{2}] is exceptional. Then ($\operatorname{Tam}_{n}, \prec$) is isomorphic to the poset of noncrossing partitions on [n].
- I has n walls.
- The walls of I form a complete exceptional collection.

Tam $_{n}$ is semidistributive

Theorem (DIRT, BCZ, A,... ?)

- The Tamari lattice Tam n is semidistributive ($x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ whenever $x \wedge y=x \wedge z$ and dual).

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of

Tamari

Exceptional intervals

Marginal intervals

Tam $_{n}$ is semidistributive

Theorem (DIRT, BCZ,A,... ?)

- The Tamari lattice Tam n is semidistributive ($x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ whenever $x \wedge y=x \wedge z$ and dual).
- There is a labelling of the edges of the Hasse diagram by the join-irreducibles :

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization of Tamari

Exceptional intervals

Tam $_{n}$ is semidistributive

Theorem (DIRT, BCZ, A,... ?)

- The Tamari lattice Tam n is semidistributive ($x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ whenever $x \wedge y=x \wedge z$ and dual).
- There is a labelling of the edges of the Hasse diagram by the join-irreducibles: If $S \leq T$ is a cover relation, there is exactly one join-irreducible j that covers j_{*} such that $S \vee j=T$ and $S \vee j_{*}=S$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

A Generalization O

Tam $_{n}$ is semidistributive

Theorem (DIRT, BCZ,A,... ?)

- The Tamari lattice Tam n is semidistributive ($x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ whenever $x \wedge y=x \wedge z$ and dual).
- There is a labelling of the edges of the Hasse diagram by the join-irreducibles: If $S \leq T$ is a cover relation, there is exactly one join-irreducible j that covers j_{*} such that $S \vee j=T$ and $S \vee j_{*}=S$.
- The join-irreducibles are in bijection with the intervals of $[n]$ (the indecomposables modules of A_{n}.)

Tam $_{n}$ is semidistributive

Theorem (DIRT, BCZ,A,... ?)

- The Tamari lattice Tam n is semidistributive ($x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ whenever $x \wedge y=x \wedge z$ and dual).
- There is a labelling of the edges of the Hasse diagram by the join-irreducibles: If $S \leq T$ is a cover relation, there is exactly one join-irreducible j that covers j_{*} such that $S \vee j=T$ and $S \vee j_{*}=S$.
- The join-irreducibles are in bijection with the intervals of $[n]$ (the indecomposables modules of A_{n}.)
- For torsion classes, $A \subseteq B$ is labelled by the unique interval I in B such that $\operatorname{Hom}(X, I)=0 \quad \forall X \in A$.

Example of Tam_{3}

Example of Tam_{3}

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry 4 Generalization of

Exceptional intervals

Marginal intervals

Walls of an intervals

Definition

Let H be a hereditary algebra and I be an interval of $\operatorname{Tilt}(H) \subset \operatorname{Tors}(H)$. The walls of I is the set of labels of the covers $X \rightarrow Y$ with exactly one of X and Y in I.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

Walls of an intervals

Definition

Let H be a hereditary algebra and I be an interval of $\operatorname{Tilt}(H) \subset \operatorname{Tors}(H)$. The walls of I is the set of labels of the covers $X \rightarrow Y$ with exactly one of X and Y in I.

For Tam_{n} : let I be an interval-poset on [n]. Let \hat{l} be the interval-poset on $[n+1]$ obtained by adding $n+1$ as the greatest element.

Walls of an intervals

Definition

Let H be a hereditary algebra and I be an interval of $\operatorname{Tilt}(H) \subset \operatorname{Tors}(H)$. The walls of I is the set of labels of the covers $X \rightarrow Y$ with exactly one of X and Y in I.

For Tam_{n} : let I be an interval-poset on [n]. Let \hat{l} be the interval-poset on $[n+1]$ obtained by adding $n+1$ as the greatest element.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Walls of an intervals

Definition

Let H be a hereditary algebra and I be an interval of Tilt $(H) \subset \operatorname{Tors}(H)$. The walls of I is the set of labels of the covers $X \rightarrow Y$ with exactly one of X and Y in I.

For Tam_{n} : let I be an interval-poset on [n]. Let \widehat{l} be the interval-poset on $[n+1]$ obtained by adding $n+1$ as the greatest element.

Walls of I are : 2, 3, 123 (incoming) and 1 (outgoing).

Walls of an intervals

Definition

Let H be a hereditary algebra and I be an interval of $\operatorname{Tilt}(H) \subset \operatorname{Tors}(H)$. The walls of I is the set of labels of the covers $X \rightarrow Y$ with exactly one of X and Y in I.

For Tam_{n} : let I be an interval-poset on [n]. Let \hat{l} be the interval-poset on $[n+1]$ obtained by adding $n+1$ as the greatest element.

Walls of I are : 2, 3, 123 (incoming) and 1 (outgoing).

Walls of an intervals

For Tam_{n} : let l be an interval-poset on [n]. Let \hat{l} be the interval-poset on [$n+1$] obtained by adding $n+1$ as the greatest element.

Walls of I are : 2, 3,123 (incoming) and 1 (outgoing).

Theorem (R 2023)

- There is a bijection between the walls of I and the cover relations of \hat{l}.

Walls of an intervals

Baptiste Rognerud

Theorem (R 2023)

- There is a bijection between the walls of I and the cover relations of $\hat{\imath}$.
- The number of walls is $n+$ the number of ordinary* configurations.

Hidden symmetry (ii)

Theorem (Chapoton, CNHT,R)

There are two injective maps, a bijection, a commutative triangle $\mathrm{NCT}_{n} \xrightarrow[\text { Exc-IP }]{C} \operatorname{lnt}\left(\mathrm{Tam}_{n}\right)$

Theorem (R 2020/2023)

The Coxeter transformation of Tam_{n} sends an exceptional interval I to C(Walls(I)).

Baptiste Rognerud

Hidden symmetry

A Generalization o

cextai n wells	0	1	2	3	4	5
2	3					
3	12	1				
4	55	12	1			
5	273	105	19	2		
6	1428	816	234	48	4	
7	77525985	2380716123	9			

Marginal intervals

Definition

An interval / of Tam $_{n}$ is marginal if its number of walls is maximal $(=2 n-2)$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

Marginal intervals

Definition

An interval / of Tam $_{n}$ is marginal if its number of walls is maximal $(=2 n-2)$.

Theorem

There is a simple bijection between marginal intervals of Tam_{n} and Motzkin paths of length $n-3$.

Baptiste Rognerud

Hidden symmetry

Marginal intervals

Definition

An interval / of Tam $_{n}$ is marginal if its number of walls is maximal $(=2 n-2)$.

Theorem

There is a simple bijection between marginal intervals of Tam_{n} and Motzkin paths of length $n-3$.

Hidden symmetry of the Tamari lattices

Baptiste Rognerud

Hidden symmetry

Marginal intervals

Theorem

There is a simple bijection between marginal intervals of Tam_{n} and Motzkin paths of length $n-3$.

Baptiste Rognerud

Hidden symmetry

Marginal intervals

Baptiste Rognerud

Hidden symmetry

A Generalization of

Tamari

Exceptional

intervals

Marginal intervals

