Primitive elements for magmatic infinitesimal bialgebras

María Ronco IMAFI. Universidad de Talca

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

 $Hopf \ algebra \ of \ special \ posets$

Magmatic unital infinitesimal bialgebras

Aguiar and Sottile formula

Primitive elements for magmatic infinitesimal bialgebras

Joint work with D. Artenstein and A. González.

 \mathbb{K} a field, and $[n] := \{1, \ldots, n\}$, for $n \ge 1$.

Goal Study the bialgebra of special posets introduced by V. Pilaud and V. Pons in *Algebraic structures on integer posets* Proceedings of the 30th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2018), volume 80B, Art. 61, 12 pp, Hanover, United States. Séminaire Lotharingien de Combinatoire (2018).

SPoset_n the set of special posets with n elements (P, \leq_P, \leq_P) where P is a finite set, \leq_P is a partial order and \leq_P is a total order on P.

Hopf algebra of finite special posets

 $\mathbb{K}[\mathsf{SPoset}]$ is the graded vector space $\bigoplus_{n \geq 0} \mathbb{K}[\mathsf{SPoset}_n]$ with

1. Product

$$\mathsf{P} * Q := \sum_{\substack{H \in SPoset_{n+m} \ H|_{\{1,\ldots,n\}}=P, \ H|_{\{1,\ldots,n\}}=Q}} H$$

for $P \in SPoset_n$ and $Q \in SPoset_m$

2. Coproduct $\Delta(P) = \sum_{S \subseteq [n]} P|_S \otimes P|_{[n] \setminus S}$ where the sum is taken over all the subsets $S \subseteq [n]$ satisfying that $s <_P w$ for all $s \in S$ and $w \in [n] \setminus S$.

 $(\mathbb{K}[SPoset], \Delta)$ has too many primitive elements. In particular, any disconnected poset is primitive.

For $P \in \text{SPoset}_n$ and $Q \in \text{SPoset}_m$, consider the disjoint union $P \cup (Q + n)$. We have three posets structures on $P \cup (Q + n)$ satisfying that $(P, \leq_P) \hookrightarrow (P \diamond Q, \leq_\diamond)$ and $(Q, \leq_Q) \hookrightarrow (P \diamond Q, \leq_\diamond)$ are morphism of posets for $\diamond \in \{\coprod, \uparrow, \downarrow\}$, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(a) p and q are not comparable for \leq_{\coprod} for $p \in P$ and $q \in Q$,

(b)
$$p \leq_{\uparrow} q$$
 whenever $p \in P$ and $q \in Q$,

(c) $q \leq_{\downarrow} p$ whenever $p \in P$ and $q \in Q$.

Dual graded Hopf algebra

Dual of the Pilaud-Pons Hopf algebra

1. Coproduct $\stackrel{\scriptscriptstyle{(8)}}{\Delta}$ dual of *

$$\overset{\circledast}{\Delta}(P) := \sum_{i=0}^n P|_{\{1,\ldots,i\}} \otimes P|_{\{i+1,\ldots,n\}},$$

for $P \in \text{SPoset}_n$.

2. **Product** \circledast dual of $\Delta P \circledast Q := \sum_{\sigma \in Sh(n,m)} \sigma \cdot (P \uparrow Q)$, where $\sigma \cdot P$ has the same Hasse diagram than P and the total order on the nodes is obtained by replacing i by $\sigma(i)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Associated magmatic products

For $P \in \text{SPoset}_n$ and $Q \in \text{SPoset}_m$ and a pair of positive integers r, s define on $P \coprod Q = \{1, \ldots, n + m\}$ the partial orders

- (a) $P \uparrow_r^s Q$ such that $(P \uparrow_r^s Q)|_{[n]} = P$, $(P \uparrow_r^s Q)|_{[m]+n} = Q + n$ and i < j for $n - r < i \le n$ and $n < j \le n + s$,
- (b) $P \downarrow_r^s Q$ such that $(P \downarrow_r^s Q)|_{[n]} = P$, $(P \downarrow_r^s Q)|_{[m]+n} = Q + n$ and j < i for $n - r < i \le n$ and $n < j \le n + s$,
- (c) $\tau_r(P,Q)$ such that $\tau_r(P,Q)|_{[n]} = P$, $\tau_r(P,Q)|_{[m]+n} = Q+n$ and n-j < n+j+1 for $0 \le j \le r-1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark The products \coprod , \uparrow and \downarrow are associative, but \uparrow_r^s , \downarrow_r^s and τ_r are not associative. But all of them satisfy the unital infinitesimal relation with $\stackrel{\circledast}{\Delta}$:

$$\overset{\circledast}{\Delta}(P\diamond Q)=\sum P_{(1)}\otimes (P_{(2)}\diamond Q)+\sum (P\diamond Q_{(1)})\otimes Q_{(2)}-P\otimes Q.$$

(日)

Magmatic unital infinitesimal bialgebras

Definition

An *infinitesimal unital magmatic bialgebra* is a vector space A equipped with a unital product \diamond , an augmented coassociative coproduct $\stackrel{\circledast}{\Delta}$, satisfying

$$\overset{\circledast}{\Delta}(a\diamond b)=\sum a_{(1)}\otimes (a_{(2)}\diamond b)+\sum (a\diamond b_{(1)})\otimes b_{(2)}-a\otimes b,$$

For a set *S*, an *S*-infinitesimal unital magmatic bialgebra is a vector space *A* equipped with a family $\{*_s\}_{s \in S}$ of unital products and an augmented coassociative coproduct $\stackrel{\circledast}{\Delta}$, satisfying that $(A, *_s, \stackrel{\circledast}{\Delta})$ is an infinitesimal unital magmatic bialgebra for all $s \in S$.

Free S-infinitesimal unital magmatic algebra

Let \mathcal{T}_n be the set of planar rooted binary tree with n leaves.

Definition

- Let $t \in \mathcal{T}_n$ and $w \in \mathcal{T}_m$.
 - 1. The wedge of t and w is the tree $t \leq w$ obtained by joining the roots of t and w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. The product \checkmark is

$$\begin{array}{ll} 2.1 & t \ \land \ | := t \ \lor \ |, \\ 2.2 & t \ \land \ w := (t \ \land \ w') \ \lor \ w^r = w \circ_1 (t \ \lor \ |) \ , \\ \text{for } w = w' \ \lor \ w^r. \end{array}$$

 \prec is associative.

Let $\mathbb{K}[\mathcal{T}^S] = \bigoplus_{n \ge 0} \mathbb{K}[\mathcal{T}_n^S]$ be the vector space spanned by the set of planar binary rooted trees with the internal nodes colored by the elements of S.

The elements of $\mathbb{K}[\mathcal{T}_n^S]$ are linear combinations of $(t, (s_1, \ldots, s_{n-1}))$.

$$(t, (s_1, \ldots, s_{n-1})) \stackrel{\vee}{\leq} (w, (r_1, \ldots, r_{m-1})) = (t \stackrel{\vee}{\leq} w, (s_1, \ldots, s_{n-1}, s, r_1, \ldots, r_{m-1}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The free *S*-unital magmatic algebra over one generator is $(\mathbb{K}[\mathcal{T}^S, \leq_s))$.

The coproduct $\overset{\circ}{\Delta}$

As $(\mathbb{K}[\mathcal{T}^{S}], \leq_{s})$ is free, there exist a unique coproduct $\overset{\otimes}{\Delta}$ on $\mathbb{K}[\mathcal{T}^{S}]$ satisfying that $(\mathbb{K}[\mathcal{T}^{S}], \leq_{s}), \overset{\otimes}{\Delta})$ is a unital infinitesimal bialgebra for any $s \in S$.

The linear map $\overset{\circledast}{\Delta}: \mathbb{K}[PBT] \longrightarrow \mathbb{K}[PBT] \otimes \mathbb{K}[PBT]$ is defined recursively by

1.
$$\overset{\circledast}{\Delta}(1_{\mathbb{K}}) := 1_{\mathbb{K}} \otimes 1_{\mathbb{K}},$$

2. $\overset{\circledast}{\Delta}(|) := 1_{\mathbb{K}} \otimes |+| \otimes 1_{\mathbb{K}},$
3. In general,
 $\overset{\circledast}{\Delta}(t \leq w) := \sum t_{(1)} \otimes (t_{(2)} \leq w) + \sum (t \leq w_{(1)}) \otimes w_{(2)} - t \otimes w,$
for any colored trees t and w , where $\overset{\circledast}{\Delta}(t) = \sum t_{(1)} \otimes t_{(2)}$ for
any planar binary rooted tree.

 Index
 Introduction
 Hopf algebra of special posets
 Magmatic unital infinitesimal bialgebras
 Agular and Sottel

 0
 0
 00000
 000000
 000000
 0000000

Given a planar rooted binary tree t with n leaves, assume that the internal vertices of t are labelled, from left to right, by the elements of the set $\{1, \ldots, n-1\}$. The coproduct has the following expression:

$$\overset{\circledast}{\Delta}(t) = \sum_{i=0}^n t |_i \otimes t|^i,$$

where $t|_i$, respectively $t|^i$, is the tree obtained by eliminating the vertex labeled with *i* and keeping the tree on the left side, respectively keeping the tree on the right side, for $1 \le i < n$.

An infinitesimal bialgebra in the sense of Joni-Rota For any $t \in \mathcal{T}_n$, we define $\delta(t) \in \bigoplus_{i=0}^{n-1} \mathbb{K}[\mathcal{T}_{i+1}] \otimes \mathbb{K}[\mathcal{T}_{n-i}]$ as

$$\delta(t) := \sum_{i=0}^{n-1} t_{(1)}^{i+1} \otimes t_{(2)}^{i},$$

where $\overset{\circledast}{\Delta}(t) = \sum_{i=0}^{n} t_{(1)}^{i} \otimes t_{(2)}^{i}$ with $|t_{(1)}^{i}| = i$ and $|t_{(2)}^{i}| = n - i$.

Lemma

The coproducts $\breve{\Delta}$ and δ satisfy that

1. $(\mathbb{K}[\mathcal{T}], \prec, \overset{\scriptscriptstyle{\otimes}}{\Delta})$ is a unital infinitesimal bialgebra,

2. δ is a coderivation for the product \forall , that is

 $\delta \circ \lor = (\mathit{id} \otimes \lor) \circ (\delta \otimes \mathit{id}) + (\lor \otimes \mathit{id}) \circ (\mathit{id} \otimes \delta),$

3. $(\mathbb{K}[\mathcal{T}], \prec, \delta)$ is an infinitesimal bialgebra.

Aguiar-Sottile formula for the coproduct M. Aguiar and F. Sottile, *Structure of the Loday-Ronco Hopf algebra of trees* Journal of Algebra, Volume 295, Pages 473-511 (2006).

Definition

For any tree $t \in \mathcal{T}_n$,

$$M_t = \sum_{w \leq \tau t} \mu(w; t) w,$$

where μ is the Möbius function of the Tamari order.

M. Aguiar and F. Sottile

$$\Delta(M_t) = \sum_{t_1/t_2 = t} M_{t_1} \otimes M_{t_2},$$

for the Hopf algebra of planar binary rooted trees (graded by the number of internal nodes) and for the Malvenuto-Reutenauer algebra, where $t_1/t_2 := t_2 \circ_1 t_1$.

Aguiar-Sottile formula for $\mathbb{K}[\mathcal{T}]$

Proposition The element $M_{1_{T,n}}$ is given by the formulas

$$M_{\mathbf{1}_{T,n}} = | \leq M_{\mathbf{1}_{T,n-1}} - | \prec M_{\mathbf{1}_{T,n-1}},$$
$$M_{\mathbf{1}_{T,n}} = \sum_{i=1}^{i-1} \mathbf{0}_{T,i} \leq M_{\mathbf{1}_{T,n-i}},$$

for $n \ge 2$. **Proposition** Let *t* be a planar rooted tree with *n* leaves, such that $t = \mathbf{1}_{T,r} \circ (t_1, \ldots, t_{r-1}, |)$, with r < n and $t_j \in \mathcal{T}_{n_j}$, for $1 \le j < r$.

$$M_t = M_{\mathbf{1}_{T,r}} \circ (M_{t_1}, \ldots, M_{t_{r-1}}, |).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aguiar and Sottile's formula for magmatic bialgebras

Theorem

For any tree $t \in \mathbf{PBT}_n$, we have that

$$\overset{\scriptscriptstyle{\circledast}}{\Delta}(M_t) = \sum_{z_1 \wedge z_2 = t} M_{z_1} \otimes M_{z_2},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $1_{\mathbb{K}} \land t = t = t \land 1_{\mathbb{K}}$ for any planar rooted tree t.

Primitive elements for S-magmatic algebras

Let S be a non-empty set and let $s_0 \in S$ be a fixed element. For any pair of colored trees \underline{t} and \underline{w} in $\bigcup_{n\geq 1} \mathbf{PBT}_n^S$, and any $s \neq s_0$, define

$$\underline{t} \stackrel{\vee}{\leq}_{\hat{s}} \underline{w} := \underline{t} \stackrel{\vee}{\leq}_{s} \underline{w} - \underline{t} \stackrel{\vee}{\leq}_{s_0} \underline{w}, \text{ for } s \neq s_0.$$

For $n \ge 1$, define the subset \mathcal{I}_n of $\mathbb{K}[\mathbf{PBT}_n^S]$ as follows: (i) $\mathcal{I}_1 := \{|\} = \mathbf{PBT}_1^S$, (ii) $\mathcal{I}_2 := \{| \ \forall_{\hat{s}} |\}_{s \in S \setminus \{s_0\}}$, (iii) for $n > 2, \mathcal{I}_n$ is the union of the subsets • $\{(M_{| \ \forall t}, (s_1, \dots, s_{n-1})) \mid t \in \mathbf{PBT}_{n-1}, (s_1, \dots, s_{n-1}) \in S^{n-1}\}$, • $\{\underline{t} \circ (\underline{w}_1, \dots, \underline{w}_r) \mid \underline{t}, \underline{w}_1, \dots, \underline{w}_r \in \bigcup_{i=1}^{n-1} \mathcal{I}_i, \text{ with } \sum_{j=1}^r |w_j| = n\}$,

and let $\mathbb{K}[\mathcal{I}_n]$ be the subspace of $\mathbb{K}[\mathbf{PBT}_n^S]$ spanned by \mathcal{I}_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Let S be a non-empty set and $s_0 \in S$. Any element in $\mathbb{K}[\mathbf{PBT}_n^S]$ is a linear combination of elements of type

$$(\mathbf{0}_{\mathcal{T},r},(s_0,\ldots,s_0))\circ(\underline{t}_1,\ldots,\underline{t}_r),$$

where $\underline{t}_i \in \mathbb{K}[\mathcal{I}_{m_i}]$ for $1 \leq i \leq r$, with $\sum_{i=1}^r m_i = n$.

By R. Holtkamp, J:-L. Loday and M. R., *Coassociative magmatic bialgebras and the Fine numbers* Journal of Algebraic Combinatorics, Volume 28, Pages 97-114 (2008), we get that any free *S*-magmatic infinitesimal bialgebra is isomorphic to the cotensor algebra of its primitive elements. The theorem states that the subspace of primitive elements is the free algebra spanned by the elements $\forall_{\hat{s}}$ and $M_{|\forall t}$.

As $\mathbb{K}[\mathcal{T}^S]$ acts on any S-magmatic infinitesimal unital bialgebra, we get a family of primitive elements of the bialgebra of special posets.

(日)

INDEX	INTRODUCTION	HOPF ALGEBRA OF SPECIAL POSETS	Magmatic unital infinitesimal bialgebras	Aguiar and Sotti
0	0	00000	000000	000000

٠

Merci!

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▼