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Cellular diagonals

Let P be a polytope in Rn. In general, the set theoretic diagonal

∆ : P → P × P
x 7→ (x , x)

is not cellular.

Slide: G. Laplante-Anfossi
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Cellular diagonals

Definition

A cellular diagonal of a polytope P is a continuous map P → P × P such
that

1 its image is a union of dimP-faces of P × P (i.e. it is cellular),

2 it agrees with the thin diagonal on the vertices of P, and

3 it is homotopic to the thin diagonal, relative to the image of the
vertices.

Slide: G. Laplante-Anfossi
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Cellular diagonals

Example

Simplices: Alexander–Whitney map (1935-38).

Cubes: J.-P. Serre’s thesis (1951).

Associahedron:

Saneblidze–Umble (2004),
Markl–Shnider (2006),
Masuda–Tonks–Thomas–Vallette (2021).

Permutahedron:

Saneblidze–Umble (2004),
Laplante-Anfossi (2022).

Slide: G. Laplante-Anfossi
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The Permutahedra

Definition

The (n − 1)-dimensional permutahedra Pn is the convex hull of the points

(σ(1), ..., σ(n)) ∈ Rn, σ ∈ Sn
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Our Main Results

General enumeration results for cellular diagonals of the permutahedra
(a) Using hyperplane arrangements and a theorem of Zaslavsky.
(b) More explicit bijective formulae via Rainbow Trees/Forests
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More general theory can be specialised to enumerate the diagonal!
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Our Main Results

There exists an isomorphism Θ which decomposes each face A1| . . . |Ak of
the permutahedron P|A1|+···+|Ak |−1 as a product P|A1|−1 × · · · × P|Ak |−1.

Definition

A diagonal of the permutahedra △ is operadic if for every face A1| . . . |Ak

of the permutahedron P|A1|+···+|Ak |−1, the map Θ induces a topological
cellular isomorphism

△(A1)× . . .×△(Ak) ∼= △(A1| . . . |Ak) .

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

1 the LA diagonal of Laplante-Anfossi (2022), and

2 the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.
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The Goal for Today

Definition (Saneblidze–Umble, 2004)

The SU diagonal is given by the formula,

△SU([n]) =
⋃
(σ,τ)

⋃
M,N

RM(σ)× LN(τ)

where the unions are taken over all strong complementary partitions (σ, τ)
of [n], and over all admissible sequences of shifts M,N.

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by v⃗ = (v1, . . . , vn) ∈ Rn, which satisfy∑
i∈I

vi >
∑
i∈J

vj , ∀(I , J) ∈ LA(n)
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The Diagonals

Let O(n) := {(I , J) | I , J ⊂ [n], |I | = |J|, I ∩ J = ∅}

Definition

We define LA(n) and SU(n) as subsets of O(n),

LA(n) := {(I , J) ∈ O(n) | min(I ∪ J) = min I}, and by

SU(n) := {(I , J) ∈ O(n) | max(I ∪ J) = max J}.

Example

Underlined in LA, and overlined in SU,

O(2) = {(1, 2), (2, 1)}

O(3) ∋ (1, 3), (2, 3), (2, 1), (3, 2)

O(4) ∋ (1, 2), (3, 2), (14, 23), (23, 14), (13, 24)
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Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by v⃗ = (v1, . . . , vn) ∈ Rn, satisfying∑
i∈I

vi >
∑
i∈J

vj , ∀(I , J) ∈ LA(n)

Definition

The ’SU Geometric diagonal’ is given by v⃗ = (v1, . . . , vn) ∈ Rn, satisfying∑
i∈I

vi >
∑
i∈J

vj , ∀(I , J) ∈ SU(n)

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of △SU recovers the original definition of △SU.
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A Geometric Formula

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by v⃗ = (v1, . . . , vn) ∈ Rn, satisfying∑
i∈I

vi >
∑
i∈J

vj , ∀(I , J) ∈ LA(n)

Theorem (Laplante-Anfossi, 2022)

For a pair (σ, τ) of ordered partitions of [n], we have

(σ, τ) ∈ △LA ⇐⇒ ∀(I , J) ∈ LA(σ, τ),∃k ∈ [n],
∣∣σ[k] ∩ I

∣∣ > ∣∣σ[k] ∩ J
∣∣ or

∃l ∈ [n],
∣∣τ[l ] ∩ I

∣∣ < ∣∣τ[l ] ∩ J
∣∣

⇐⇒ ∀(I , J) ∈ LA(n),∃k ∈ [n],
∣∣σ[k] ∩ I

∣∣ > ∣∣σ[k] ∩ J
∣∣ or

∃l ∈ [n],
∣∣τ[l ] ∩ I

∣∣ < ∣∣τ[l ] ∩ J
∣∣ .



12/24

A Combinatorial Interpretation

Definition

A n-partition tree is a pair (σ, τ) of set partitions of [n] whose intersection
graph is a bipartite tree.

Example

An example and counter example,

13|24|57|6× 17|2|3|456
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13|24|57|6× 1|27|3|456
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✗
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Proposition (BDO,MJV,GLA,VP,KS)

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU.

σ is Good:
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τ is Bad:

13

24

57

6

17

2

3

456

13

24

57

6

17

2

3

456
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Re-orienting

Proposition (BDO,MJV,GLA,VP,KS)

Every n-partition tree can be uniquely oriented into an element of △SU.

13|24|57|6× 17|2|3|456
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13|24|57|6× 3|17|456|2
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Geometry Informs Combinatorics

(σ, τ) ∈ △SU ⇐⇒ ∀(I , J) ∈ SU(σ, τ), ∃k ∈ [n],
∣∣σ[k] ∩ I

∣∣ > ∣∣σ[k] ∩ J
∣∣ or

∃l ∈ [n],
∣∣τ[l ] ∩ I

∣∣ < ∣∣τ[l ] ∩ J
∣∣

SU(σ, τ) = {(I , J) encoded in paths between adj. blocks }
Existential Statement ∼= Maximal path element traversed right to left
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(I , J) = ({1, 5}, {4, 7})
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The Diagonal Via Shifts

Definition (Saneblidze–Umble,2004)

The SU diagonal is given by the formula,

△SU([n]) =
⋃
(σ,τ)

⋃
M,N

RM(σ)× LN(τ)

where the unions are taken over all strong complementary partitions (σ, τ)
of [n], and over all admissible sequences of shifts M,N.
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Strong Complementary Partitions

Definition

Given a permutation v , we define its strong complementary pair (σ, τ) by,

σ is obtained by merging all decreasing sequences of v

τ is obtained by merging all increasing sequences of v

3|1|7|4|2|5|6 ∼=

13|247|5|6× 3|17|4|256

13

247

5

6

3

17

4

256

Proposition

The maximal path elements of SCPs are always traversed right to left.
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Shifts

Definition

Let σ = σ1| . . . |σk be an ordered partition, and let Mi ⊊ σi be a
non-empty subset of the block σi . We define the right/left shift operators

RMi
(σ) :=σ1| . . . |σi ∖Mi |σi+1 ∪Mi | . . . |σk

LMi
(σ) :=σ1| . . . |σi−1 ∪Mi |σi ∖Mi | . . . |σk .
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R7×L5,6−−−−−→

13

24

57

6

3

17

456

2

R7×L7−−−−→

13

24

5

67

37

1

456

2
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Admissible Shifts

Definition

Let σ = σ1| . . . |σk be an ordered partition

A right shift is admissible if minσi ̸∈ Mi , and minMi > maxσi+1.

A sequence of right shifts M = (Mi1 , . . . ,Mip), is admissible if
i1 < ... < ip < k , and each sequential shift is admissible.

Dually,

A left shift is admissible if minσi ̸∈ Mi , and minMi > maxσi−1.

A sequence of left shifts M = (Mi1 , . . . ,Mip), is admissible if
i1 > ... > ip > 1, and and each sequential shift is admissible.
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Shift △SU ⊆ Geometric △SU.

We previously saw that,

Proposition (BDO,MJV,GLA,VP,KS)

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ Geo. △SU.

Show all elements of shift △SU also satisfy the path condition.

1 We know strong complementary partitions meet the path condition,

2 We show admissible sequences of shifts conserve the path condition,
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R7×L5,6−−−−−→
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Consequently, Shift △SU ⊆ Geometric △SU.
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Geometric △SU ⊆ Shift △SU.

Conversely we need,

Lemma

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left,

then it is either a strong complementary pair, or generated by shifts.

Idea: For anything that is not a strong complementary partition we can
identify an inverse shift operator, e.g.

13

24

57

6

3

17

456

2

R−1
7 ×id

−−−−−→

13

247

5

6

3

17

456

2

−→ . . .
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A Zoo of Formulae

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of △SU recovers the original definition of △SU.

Consequently, have many different encodings of the LA and SU diagonals.

Geometric formulae

Min/max path formulae

Shift formulae

Cubical formulae

Matrix formulae
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Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

1 the LA diagonal of Laplante-Anfossi (2022), and

2 the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.

△SU ∋

13

24

57

6

3

17

456

2

t−→

13

24

57

6

3

17

456

2

r×r−−→

57

46

13

2

5

17

234

6

∈ △LA

Proposition (BDO,MJV,GLA,VP,KS)

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU.

2 the minimal path element left to right, then (σ, τ) ∈ △LA.



24/24

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

1 the LA diagonal of Laplante-Anfossi (2022), and

2 the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.

△SU ∋

13

24

57

6

3

17

456

2

t−→

13

24

57

6

3

17

456

2

r×r−−→

57

46

13

2

5

17

234

6

∈ △LA

Proposition (BDO,MJV,GLA,VP,KS)

Let (σ, τ) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

1 the maximal path element right to left, then (σ, τ) ∈ △SU.

2 the minimal path element left to right, then (σ, τ) ∈ △LA.


