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Cellular diagonals

Let P be a polytope in R”. In general, the set theoretic diagonal

A : P - PxP
x = (x,x)

is not cellular.

(0,1) 1,1)

0 1 (0,0) (1.0)
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Cellular diagonals

Definition
A cellular diagonal of a polytope P is a continuous map P — P x P such
that

© its image is a union of dim P-faces of P x P (i.e. it is cellular),

@ it agrees with the thin diagonal on the vertices of P, and

© it is homotopic to the thin diagonal, relative to the image of the
vertices.

(0.1) 1.1

0 1 (0,0) 1,0)

Slide: G. Laplante-Anfossi



Cellular diagonals

@ Simplices: Alexander-Whitney map (1935-38).

@ Cubes: J.-P. Serre's thesis (1951).
@ Associahedron:

o Saneblidze-Umble (2004),
o Markl-Shnider (2006),
o Masuda—Tonks—Thomas—Vallette (2021).

@ Permutahedron:

o Saneblidze-Umble (2004),
o Laplante-Anfossi (2022).

Slide: G. Laplante-Anfossi



The Permutahedra

Definition

The (n — 1)-dimensional permutahedra P, is the convex hull of the points

(o(1),...,0(n)) eR", 0 €S,
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Our Main Results

General enumeration results for cellular diagonals of the permutahedra
@ Using hyperplane arrangements and a theorem of Zaslavsky.
@ More explicit bijective formulae via Rainbow Trees/Forests

More general theory can be specialised to enumerate the diagonal!



Our Main Results

There exists an isomorphism © which decomposes each face A;] ... |Ak of
the permutahedron P4 1.1 |a,|—1 as a product Pja 1 X -+ X Pja 1.

Definition

A diagonal of the permutahedra A is operadic if for every face Aj|...|Ax
of the permutahedron P4 |4...4|4,|—1, the map © induces a topological
cellular isomorphism

A(Al) X ... X A(Ak) = A(A1| 500 |Ak) o
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Our Main Results

There exists an isomorphism © which decomposes each face A;] ... |Ak of
the permutahedron P4 1.1 |a,|—1 as a product Pja 1 X -+ X Pja 1.

Definition

A diagonal of the permutahedra A is operadic if for every face Aj|...|Ax

of the permutahedron P, |4...4 4,1, the map © induces a topological
cellular isomorphism

A(Al) X ... X A(Ak) = A(A1| 500 |Ak) o

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

Q the LA diagonal of Laplante-Anfossi (2022), and
@ the SU diagonal of Saneblidze-Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.

= = = =T




The Goal for Today

Definition (Saneblidze-Umble, 2004)
The SU diagonal is given by the formula,

ASY([n) = | | Rm(o) x Ln(7)

(o,7) M,N

where the unions are taken over all strong complementary partitions (o, 7)
of [n], and over all admissible sequences of shifts M, N.

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by v = (vy,.

.., Vp) € R", which satisfy

> vi>> v, Y(I,J) € LA(n)

i€l i€l




The Diagonals

Let O(n):= {(1,J) | 1,J C [n],|I| = [J|, I N J =0}

Definition

We define LA(n) and SU(n) as subsets of O(n),
e LA(n):= {(/,J) € O(n) | min(/UJ)=min/}, and by
e SU(n):={(/,J) € O(n) | max(/UJ)=maxJ}.

Example
Underlined in LA, and overlined in SU,

0(2) = {(1,2),(2,1)}

0(3) > (1,3),(2,3),(2,1),(3,2)

0(4) > (1,2),(3,2), (14,23),(23,14), (13, 24)

r — = T




Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by vV = (v1,...,v,) € R", satisfying

> vi>Y v, V(I,J) € LA(n)

iel ied




Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by vV = (v1,...,v,) € R", satisfying

> vi>> v, ¥(I,J) € LA(n)

iel ied

Definition

The 'SU Geometric diagonal’ is given by v = (v1,...,v,) € R", satisfying

> vi>Y v, V(I,J) € SU(n)

i€l ied




Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by vV = (v1,...,v,) € R", satisfying

> vi>> v, ¥(I,J) € LA(n)

i€l i€l

Definition

The 'SU Geometric diagonal’ is given by v = (v1,...,v,) € R", satisfying

> vi>Y v, V(I,J) € SU(n)

i€l ieJ

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of ASY recovers the original definition of /ASY.




A Geometric Formula

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by vV = (v1,...,v,) € R", satisfying

> vi>> v, Y(I,J) € LA(n)

icl icJ

Theorem (Laplante-Anfossi, 2022)

For a pair (o, 7) of ordered partitions of [n], we have

(o,7) € A = V(I,J) € LA(0,7),3k € [n], |ogg N 1| > |ogg N J| or
e fnl [rg 01| < |mp 0]
< Y(I,J) € LA(n),3k € [n],|ogg N 1| > |opg N J| or
e n],|mpnt| < |nd| .




A Combinatorial Interpretation

Definition

A n-partition tree is a pair (o, 7) of set partitions of [n] whose intersection
graph is a bipartite tree.

v

Example

An example and counter example,

1324/57|6 x 17|2|3[456  13[24|57|6 x 1|27|3|456

13 17 13 1

24 2 24 27

57 3 57 3
6 456 6 456

A\




Proposition (BDO,MJV,GLA VP KS)

Let (0, 7) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

@ the maximal path element right to left, then (o,7) € ASY.

13 17 13 17 13 17

24 2 24 2 24 2
o is Good:

57 3 57 3 57 3

6 —456 6 ——456 6 456

T is Bad:




Proposition (BDO,MJV,GLA,VP,KS)

Every n-partition tree can be uniquely oriented into an element of ASY.

13|24(57|6 x 17|2|3|456  13|24|57|6 x 3|17|456|2

13 17 13 3
24 2 24 17

— e NSU
57 3 57 456
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Geometry Informs Combinatorics

(0,7) € A%V = Y(1,J) € SU(0,7), 3k € [n],|ognI| > |oggnJ| or
3l € [n], |T[/] N /‘ < |T[/] ﬂJl

SU(o,7) = {(/,J) encoded in paths between adj. blocks }
Existential Statement = Maximal path element traversed right to left

13 i 3
24 17

>
-

456 (/7J) = ({1’5}7 {47 7})



The Diagonal Via Shifts

Definition (Saneblidze-Umble,2004)
The SU diagonal is given by the formula,

ASY([n) = | | Rm(o) x Ln(7)

(o,7) M,N

where the unions are taken over all strong complementary partitions (o, 7)
of [n], and over all admissible sequences of shifts M, N.




Strong Complementary Partitions

Definition

Given a permutation v, we define its strong complementary pair (o, 7) by,
@ o is obtained by merging all decreasing sequences of v

@ 7 is obtained by merging all increasing sequences of v

13]247|5/6 x 3|17|4|256

13 3
247 17

3[1[7/4|25]6 =
5 4

6 256



Strong Complementary Partitions

Definition

Given a permutation v, we define its strong complementary pair (o, 7) by,
@ o is obtained by merging all decreasing sequences of v

@ 7 is obtained by merging all increasing sequences of v

13]247|5/6 x 3|17|4|256

13 3
247 17
3[1[7/4|25]6 =
5 4
6 256

Proposition
The maximal path elements of SCPs are always traversed right to left.

CNe%




Shifts

Definition

Let 0 = 01| ... |0k be an ordered partition, and let M; C o; be a

==

non-empty subset of the block o;. We define the right/left shift operators

RM;(U) ZZU]_| R |0,’ N M,'|O','+1 U M,'l ce |0’k

LM;(U) ZZU]_| ce |U,'_1 U M,’|O’,‘ N M,'l ce |Uk .

13 3 13 3 13 37
247 17 pour, 24 17 .., 24 1
> 7 7
5 4 57 456 5 456

6 256 6 2 67 2



Admissible Shifts

Definition
Let 0 = 01| ...|ok be an ordered partition
@ A right shift is admissible if mino; € M;, and min M; > maxgjyi.

Dually,
@ A left shift is admissible if mino; & M;, and min M; > maxo;_1.

13 3 13 3 13 37
247 17 gy, 24 17 .. 24 1
’ 7 7
5 4 57 456 5 456



Admissible Shifts

Definition

Let 0 = 01| ...|ok be an ordered partition
@ A right shift is admissible if mino; € M;, and min M; > maxgjyi.
@ A sequence of right shifts M = (M, ..., M; ), is admissible if
i1 < ... <lp < k, and each sequential shift is admissible.
Dually,
@ A left shift is admissible if mino; & M;, and min M; > maxo;_1.

o A sequence of left shifts M = (M, ..., M, ), is admissible if
i1 > ... > I, > 1, and and each sequential shift is admissible.

13 3 13 3 13 37
247 17| g, 24 17 .. 24 1
’ 7 7
5 4 57 456 5 456



The Diagonal Via Shifts

Definition (Saneblidze-Umble, 2004)
The SU diagonal is given by the formula,

A% = |J U Ru(o) x Lu(7)

(U7T) M7N

where the unions are taken over all strong complementary partitions (o, 7)
of [n], and over all admissible sequences of shifts M, N.

13 3 13 3 13 37
247 17 poi, 24 17 .. 24 1
> 7 7
5 4 57 456 5 456

6 256 6 2 67 2



Shift ASY C Geometric ASY.

We previously saw that,

Proposition (BDO,MJV,GLA,VP,KS)

Let (0,7) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

@ the maximal path element right to left, then (o, 7) € Geo. ASY.

Show all elements of shift ASY also satisfy the path condition.
@ We know strong complementary partitions meet the path condition,
@ We show admissible sequences of shifts conserve the path condition,
3

17

Consequently, Shift ASY C Geometric ASY.



Geometric ASY C Shift ASY.

Conversely we need,

Let (0,7) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

© the maximal path element right to left,

then it is either a strong complementary pair, or generated by shifts.

Idea: For anything that is not a strong complementary partition we can
identify an inverse shift operator, e.g.

24 17 gt 247 17

-
-

e
456 5 456
2 6 2



A Zoo of Formulae

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of ASY recovers the original definition of /ASY.




A Zoo of Formulae

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of ASY recovers the original definition of /ASY.

Consequently, have many different encodings of the LA and SU diagonals.
@ Geometric formulae
@ Min/max path formulae
@ Shift formulae
@ Cubical formulae
°

Matrix formulae



Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which
respect the weak Bruhat order on the vertices:

© the LA diagonal of Laplante-Anfossi (2022), and
@ the SU diagonal of Saneblidze~Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.
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13<——3 3 13 b——5%7

ASU 5 24\ 17 i> 17 /24 rxr, 17 /46 c ALA
57 4 57 LA 13

456 456 234
6/<2 27\6 67\2

Proposition (BDO,MJV,GLA, VP KS)

Let (o,7) be a pair of ordered partitions of [n] forming an n-partition tree.
If for all pairs of adjacent blocks, the directed path between them traverses

@ the maximal path element right to left, then (o, 7) € ASU.
@ the minimal path element left to right, then (o, 7) € A2,




