Relating Diagonals of the Permutahedra

Kurt Stoeckl supervised by Marcy Robertson.
Joint work with Bérénice Delcroix-Oger, Matthieu Josuat-Vergès,
Guillaume Laplante-Anfossi, and Vincent Pilaud.

The University of Melbourne

GT Algebraic Combinatorics 2023
Let P be a polytope in \mathbb{R}^n. In general, the set theoretic diagonal

$$\Delta : P \rightarrow P \times P$$

$$x \mapsto (x, x)$$

is not cellular.
A *cellular diagonal* of a polytope P is a continuous map $P \rightarrow P \times P$ such that

1. its image is a union of dim P-faces of $P \times P$ (i.e. it is *cellular*),
2. it agrees with the thin diagonal on the vertices of P, and
3. it is homotopic to the thin diagonal, relative to the image of the vertices.
Cellular diagonals

Example

- Associahedron:
 - Saneblidze–Umble (2004),
 - Markl–Shnider (2006),
- Permutahedron:
 - Saneblidze–Umble (2004),
The Permutahedra

Definition

The \((n - 1)\)-dimensional permutahedra \(P_n\) is the convex hull of the points

\[(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n, \sigma \in S_n\]
Our Main Results

General enumeration results for **cellular** diagonals of the **permutahedra**

- Using hyperplane arrangements and a theorem of Zaslavsky.
- More explicit bijective formulae via Rainbow Trees/Forests

More general theory can be specialised to enumerate the diagonal!
Our Main Results

There exists an isomorphism Θ which decomposes each face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$ as a product $P_{|A_1|-1} \times \cdots \times P_{|A_k|-1}$.

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$, the map Θ induces a topological cellular isomorphism

$$\triangle(A_1) \times \ldots \times \triangle(A_k) \cong \triangle(A_1|\ldots|A_k).$$

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
2. the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.
Our Main Results

There exists an isomorphism Θ which decomposes each face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$ as a product $P_{|A_1|-1} \times \cdots \times P_{|A_k|-1}$.

Definition

A diagonal of the permutahedra \triangle is *operadic* if for every face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$, the map Θ induces a topological cellular isomorphism

$$\triangle(A_1) \times \ldots \times \triangle(A_k) \cong \triangle(A_1|\ldots|A_k).$$

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:
Our Main Results

There exists an isomorphism Θ which decomposes each face $A_1 | \ldots | A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$ as a product $P_{|A_1|-1} \times \cdots \times P_{|A_k|-1}$.

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_1 | \ldots | A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$, the map Θ induces a topological cellular isomorphism

$$\triangle(A_1) \times \ldots \times \triangle(A_k) \cong \triangle(A_1| \ldots | A_k).$$

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
Our Main Results

There exists an isomorphism Θ which decomposes each face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$ as a product $P_{|A_1|-1} \times \cdots \times P_{|A_k|-1}$.

Definition

A diagonal of the permutahedra \triangle is \textit{operadic} if for every face $A_1|\ldots|A_k$ of the permutahedron $P_{|A_1|+\ldots+|A_k|-1}$, the map Θ induces a topological cellular isomorphism

$$\triangle(A_1) \times \ldots \times \triangle(A_k) \cong \triangle(A_1|\ldots|A_k).$$

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
2. the SU diagonal of Saneblidze–Umble (2004).
Our Main Results

There exists an isomorphism Θ which decomposes each face $A_1|\ldots|A_k$ of the permutahedron $P|A_1|+\ldots+|A_k|−1$ as a product $P|A_1|−1 \times \cdots \times P|A_k|−1$.

Definition

A diagonal of the permutahedra \triangle is operadic if for every face $A_1|\ldots|A_k$ of the permutahedron $P|A_1|+\ldots+|A_k|−1$, the map Θ induces a topological cellular isomorphism

$$\triangle(A_1) \times \ldots \times \triangle(A_k) \cong \triangle(A_1|\ldots|A_k).$$

Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
2. the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellurally, and at the level of face lattices.
The Goal for Today

Definition (Saneblidze–Umble, 2004)
The SU diagonal is given by the formula,

\[\triangle^{SU}([n]) = \bigcup (\sigma, \tau) \bigcup M, N R_M(\sigma) \times L_N(\tau) \]

where the unions are taken over all strong complementary partitions \((\sigma, \tau)\) of \([n]\), and over all admissible sequences of shifts \(M, N\).

Definition (Laplante-Anfossi, 2022)
The LA diagonal is given by \(\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n\), which satisfy

\[\sum_{i \in I} v_i > \sum_{i \in J} v_j \quad \forall (I, J) \in LA(n) \]
The Diagonals

Let \(O(n) := \{(I, J) \mid I, J \subset [n], |I| = |J|, I \cap J = \emptyset\} \)

Definition

We define LA\((n)\) and SU\((n)\) as subsets of \(O(n) \),

- LA\((n)\) := \(\{(I, J) \in O(n) \mid \min(I \cup J) = \min I\} \), and by
- SU\((n)\) := \(\{(I, J) \in O(n) \mid \max(I \cup J) = \max J\} \).

Example

Underlined in LA, and overlined in SU,

\[
O(2) = \{(1,2), (2,1)\}
\]

\[
O(3) \ni (1,3), (2,3), (2,1), (3,2)
\]

\[
O(4) \ni (1,2), (3,2), (14,23), (23,14), (13,24)
\]
Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by \(\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n \), satisfying

\[
\sum_{i \in I} v_i > \sum_{i \in J} v_j, \quad \forall (I, J) \in \text{LA}(n)
\]
Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by $\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n$, satisfying

$$\sum_{i \in I} v_i > \sum_{j \in J} v_j, \quad \forall (I, J) \in \text{LA}(n)$$

Definition

The 'SU Geometric diagonal' is given by $\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n$, satisfying

$$\sum_{i \in I} v_i > \sum_{j \in J} v_j, \quad \forall (I, J) \in \text{SU}(n)$$
Geometric Formulae

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by \(\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n \), satisfying

\[
\sum_{i \in I} v_i > \sum_{i \in J} v_j, \quad \forall (I, J) \in \text{LA}(n)
\]

Definition

The 'SU Geometric diagonal' is given by \(\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n \), satisfying

\[
\sum_{i \in I} v_i > \sum_{i \in J} v_j, \quad \forall (I, J) \in \text{SU}(n)
\]

Theorem (BDO,MJV,GLA,VP,KS)

This geometric definition of \(\Delta_{SU} \) recovers the original definition of \(\Delta_{SU} \).
A Geometric Formula

Definition (Laplante-Anfossi, 2022)

The LA diagonal is given by \(\vec{v} = (v_1, \ldots, v_n) \in \mathbb{R}^n \), satisfying

\[
\sum_{i \in I} v_i > \sum_{i \in J} v_j , \; \forall (I, J) \in \text{LA}(n)
\]

Theorem (Laplante-Anfossi, 2022)

For a pair \((\sigma, \tau)\) of ordered partitions of \([n]\), we have

\[
(\sigma, \tau) \in \Delta_{\text{LA}} \iff \forall (I, J) \in \text{LA}(\sigma, \tau), \exists k \in [n], |\sigma[k] \cap I| > |\sigma[k] \cap J| \text{ or } \\
\exists l \in [n], |\tau[l] \cap I| < |\tau[l] \cap J| \\
\iff \forall (I, J) \in \text{LA}(n), \exists k \in [n], |\sigma[k] \cap I| > |\sigma[k] \cap J| \text{ or } \\
\exists l \in [n], |\tau[l] \cap I| < |\tau[l] \cap J| .
\]
A Combinatorial Interpretation

Definition
A \(n \)-partition tree is a pair \((\sigma, \tau)\) of set partitions of \([n]\) whose intersection graph is a bipartite tree.

Example
An example and counter example,

\[
\begin{align*}
13 &| 24 | 57 | 6 \times 17 | 2 | 3 | 456 & & 13 &| 24 | 57 | 6 \times 1 | 27 | 3 | 456 \\
\begin{array}{c}
13 \\
24 \\
57 \\
6
\end{array} & \begin{array}{c}
17 \\
2 \\
3 \\
456
\end{array} & \begin{array}{c}
13 \\
24 \\
57 \\
6
\end{array} & \begin{array}{c}
1 \\
27 \\
3 \\
456
\end{array}
\end{align*}
\]
Proposition (BDO,MJV,GLA,VP,KS)

Let \((\sigma, \tau)\) be a pair of ordered partitions of \([n]\) forming an \(n\)-partition tree. If for all pairs of adjacent blocks, the directed path between them traverses the maximal path element right to left, then \((\sigma, \tau) \in \bigtriangleup^{SU}\).

\(\sigma\) is Good:

\(\tau\) is Bad:
Re-orienting

Proposition (BDO, MJV, GLA, VP, KS)

Every n-partition tree can be uniquely oriented into an element of \triangle^{SU}.

\[
\begin{align*}
13 | 24 | 57 | 6 & \times 17 | 2 | 3 | 456 & 13 | 24 | 57 | 6 & \times 3 | 17 | 456 | 2 \\
13 & 17 \\
24 & 2 \\
57 & 3 \\
6 & 456 & 13 & 3 \\
24 & 17 \\
57 & 456 \\
6 & 2 & \in \triangle^{SU}
\end{align*}
\]
Re-orienting

Proposition (BDO,MJV,GLA,VP,KS)

*Every n-partition tree can be uniquely oriented into an element of \triangle^{SU}.***

\[13|24|57|6 \times 17|2|3|456\]
\[\rightarrow\]
\[13|24|57|6 \times 3|17|456|2\]
\[\in \triangle^{SU}\]
Geometry Informs Combinatorics

$$(\sigma, \tau) \in \triangle^{SU} \iff \forall (I, J) \in SU(\sigma, \tau), \exists k \in [n], |\sigma[k] \cap I| > |\sigma[k] \cap J| \text{ or } \exists l \in [n], |\tau[l] \cap I| < |\tau[l] \cap J|$$

$SU(\sigma, \tau) = \{(I, J) \text{ encoded in paths between adj. blocks}\}$

Existential Statement \cong Maximal path element traversed right to left

$$(I, J) = (\{1, 5\}, \{4, 7\})$$
The Diagonal Via Shifts

Definition (Saneblidze–Umble, 2004)

The SU diagonal is given by the formula,

\[\Delta^{SU}([n]) = \bigcup_{(\sigma, \tau)} \bigcup_{M,N} R_{M}(\sigma) \times L_{N}(\tau) \]

where the unions are taken over all strong complementary partitions \((\sigma, \tau)\) of \([n]\), and over all admissible sequences of shifts \(M, N\).
Strong Complementary Partitions

Definition

Given a permutation ν, we define its strong complementary pair (σ, τ) by,

- σ is obtained by merging all decreasing sequences of ν
- τ is obtained by merging all increasing sequences of ν

Proposition

The maximal path elements of SCPs are always traversed right to left.
Strong Complementary Partitions

Definition
Given a permutation ν, we define its strong complementary pair (σ, τ) by,
- σ is obtained by merging all decreasing sequences of ν
- τ is obtained by merging all increasing sequences of ν

Proposition
The maximal path elements of SCPs are always traversed right to left.
Let $\sigma = \sigma_1 \ldots |\sigma_k$ be an ordered partition, and let $M_i \subsetneq \sigma_i$ be a non-empty subset of the block σ_i. We define the right/left shift operators:

$$R_{M_i}(\sigma) := \sigma_1 \ldots |\sigma_i \setminus M_i|\sigma_{i+1} \cup M_i| \ldots |\sigma_k$$

$$L_{M_i}(\sigma) := \sigma_1 \ldots |\sigma_{i-1} \cup M_i|\sigma_i \setminus M_i| \ldots |\sigma_k .$$
Admissible Shifts

Definition

Let $\sigma = \sigma_1|\ldots|\sigma_k$ be an ordered partition

- A right shift is admissible if $\min \sigma_i \not\in M_i$, and $\min M_i > \max \sigma_{i+1}$.

Dually,

- A left shift is admissible if $\min \sigma_i \not\in M_i$, and $\min M_i > \max \sigma_{i-1}$.
Admissible Shifts

Definition

Let $\sigma = \sigma_1 \ldots \sigma_k$ be an ordered partition

- A right shift is admissible if $\min \sigma_i \not\in M_i$, and $\min M_i > \max \sigma_{i+1}$.
- A sequence of right shifts $\mathbf{M} = (M_{i_1}, \ldots, M_{i_p})$, is admissible if $i_1 < \ldots < i_p < k$, and each sequential shift is admissible.

Dually,

- A left shift is admissible if $\min \sigma_i \not\in M_i$, and $\min M_i > \max \sigma_{i-1}$.
- A sequence of left shifts $\mathbf{M} = (M_{i_1}, \ldots, M_{i_p})$, is admissible if $i_1 > \ldots > i_p > 1$, and each sequential shift is admissible.
The Diagonal Via Shifts

Definition (Saneblidze–Umble, 2004)

The SU diagonal is given by the formula,

\[\triangle^{SU}([n]) = \bigcup_{(\sigma,\tau)} \bigcup_{M,N} R_M(\sigma) \times L_N(\tau) \]

where the unions are taken over all strong complementary partitions \((\sigma, \tau)\) of \([n]\), and over all admissible sequences of shifts \(M, N\).
Proposition (BDO,MJV,GLA,VP,KS)

Let \((\sigma, \tau)\) be a pair of ordered partitions of \([n]\) forming an \(n\)-partition tree. If for all pairs of adjacent blocks, the directed path between them traverses the \textbf{maximal} path element \textbf{right to left}, then \((\sigma, \tau) \in Geo. \ \triangle^{SU}\).

Show all elements of shift \(\triangle^{SU}\) also satisfy the path condition.

1. We know strong complementary partitions meet the path condition,
2. We show admissible sequences of shifts conserve the path condition,

Consequently, Shift \(\triangle^{SU} \subseteq Geometric \ \triangle^{SU}\).
Geometric $\Delta^\text{SU} \subseteq \text{Shift} \Delta^\text{SU}$.

Conversely we need,

Lemma

Let (σ, τ) be a pair of ordered partitions of $[n]$ forming an n-partition tree. If for all pairs of adjacent blocks, the directed path between them traverses the **maximal** path element **right to left**, then it is either a strong complementary pair, or generated by shifts.

Idea: For anything that is not a strong complementary partition we can identify an inverse shift operator, e.g.

$$
\begin{array}{c}
13 & \rightarrow & 3 \\
24 & \rightarrow & 17 \\
57 & \rightarrow & 456 \\
6 & \rightarrow & 2
\end{array}
$$

$$
R_7^{-1} \times \text{id}
$$

$$
\begin{array}{c}
13 & \rightarrow & 3 \\
247 & \rightarrow & 17 \\
5 & \rightarrow & 456 \\
6 & \rightarrow & 2
\end{array}
$$

$\rightarrow \cdots$
This geometric definition of \triangle^{SU} recovers the original definition of \triangle^{SU}.

Theorem (BDO,MJV,GLA,VP,KS)
This geometric definition of \triangle^{SU} recovers the original definition of \triangle^{SU}.

Consequently, have many different encodings of the LA and SU diagonals.

- Geometric formulae
- Min/max path formulae
- Shift formulae
- Cubical formulae
- Matrix formulae
Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
2. the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.
Theorem (BDO,MJV,GLA,VP,KS)

There are exactly two operadic diagonals of the permutahedra, which respect the weak Bruhat order on the vertices:

1. the LA diagonal of Laplante-Anfossi (2022), and
2. the SU diagonal of Saneblidze–Umble (2004).

They are isomorphic cellularly, and at the level of face lattices.

\[\triangle_{SU} \ni 13 \quad 3 \quad 24 \quad 17 \quad t \quad 3 \quad 17 \quad 24 \quad r \times r \quad 5 \quad 57 \quad 13 \quad 234 \quad 6 \quad \in \triangle_{LA} \]

Proposition (BDO,MJV,GLA,VP,KS)

Let \((\sigma, \tau)\) be a pair of ordered partitions of \([n]\) forming an \(n\)-partition tree. If for all pairs of adjacent blocks, the directed path between them traverses

1. the maximal path element right to left, then \((\sigma, \tau) \in \triangle_{SU}\).
2. the minimal path element left to right, then \((\sigma, \tau) \in \triangle_{LA}\).