Some algebraic and combinatorial problems from non-commutative probability

Yannic VARGAS

Journées annuelles du GT CombAlg 2023
Université Paris-Cité, July 3-5

Sequences with a

combinatorial/probabilistic flavor

Let

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

be a sequence of integers.

Let

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

be a sequence of integers.

Combinatorialists: what do these numbers count (or represent)?

Let

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

be a sequence of integers.

Combinatorialists: what do these numbers count (or represent)?

Probabilists: is this a moment/cumulant sequence?

Let

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

be a sequence of integers.

Combinatorialists: what do these numbers count (or represent)?

Probabilists: is this a moment/cumulant sequence?

Moment problem: $\left(a_{n}\right)_{n}$ is the sequence of moments of some measure if and only if the Hankel matrices associated to the sequence are positive definite.

Let X be a random variable with distribution ψ and moments

$$
m_{n}=m_{n}(X)=\int x^{n} d \psi(x) .
$$

Let X be a random variable with distribution ψ and moments

$$
m_{n}=m_{n}(X)=\int x^{n} d \psi(x)
$$

Let

$$
\mathcal{F}(z)=\int e^{x z} d \psi(x)=\sum_{n \geq 0} m_{n} \frac{z^{n}}{n!}
$$

be the formal Laplace transform.

Let X be a random variable with distribution ψ and moments

$$
m_{n}=m_{n}(X)=\int x^{n} d \psi(x)
$$

Let

$$
\mathcal{F}(z)=\int e^{x z} d \psi(x)=\sum_{n \geq 0} m_{n} \frac{z^{n}}{n!}
$$

be the formal Laplace transform. We can write this series as

$$
\mathcal{F}(z)=e^{K(z)}
$$

where

$$
K(z)=\sum_{n \geq 1} \kappa_{n} \frac{z^{n}}{n!}
$$

is the cumulant generating function.

By the exponential formula, since

$$
\mathcal{F}(z)=e^{K(z)}
$$

then we have

$$
\mathrm{m}_{\pi}=\sum_{\pi \leq \tau} \mathrm{k}_{\tau}
$$

where $m_{\pi}=m_{\left|B_{1}\right|} m_{\left|B_{2}\right|} \cdots m_{\left|B_{k}\right|}$ and $\kappa_{\pi}=K_{\left|B_{1}\right|} K_{\left|B_{2}\right|} \cdots K_{\left|B_{k}\right|}$ if $\pi=\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right\}$.

By the exponential formula, since

$$
\mathcal{F}(z)=e^{K(z)}
$$

then we have

$$
\mathrm{m}_{\pi}=\sum_{\pi \leq \tau} \mathrm{k}_{\tau}
$$

where $m_{\pi}=m_{\left|B_{1}\right|} m_{\left|B_{2}\right|} \cdots m_{\left|B_{k}\right|}$ and $\kappa_{\pi}=K_{\left|B_{1}\right|} K_{\left|B_{2}\right|} \cdots K_{\left|B_{k}\right|}$ if $\pi=\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right\}$.

Here, \leq corresponds to the poset of partitions $\Pi(n)$ of the set $[n]:=\{1,2, \ldots, n\}$ with the refinement order.

By the exponential formula, since

$$
\mathcal{F}(z)=e^{K(z)}
$$

then we have

$$
\mathrm{m}_{\pi}=\sum_{\pi \leq \tau} \mathrm{k}_{\tau}
$$

where $m_{\pi}=m_{\left|B_{1}\right|} m_{\left|B_{2}\right|} \cdots m_{\left|B_{k}\right|}$ and $\kappa_{\pi}=K_{\left|B_{1}\right|} K_{\left|B_{2}\right|} \cdots K_{\left|B_{k}\right|}$ if $\pi=\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right\}$.

Here, \leq corresponds to the poset of partitions $\Pi(n)$ of the set $[n]:=\{1,2, \ldots, n\}$ with the refinement order. The minimal element is the partition $\{[n]\}$. Hence,

$$
m_{n}=\sum_{\pi \in \Pi(n)} \kappa_{\pi} \quad \text { and } \quad \kappa_{n}=\sum_{\pi \in \Pi(n)} \mu(\hat{0}, \pi) m_{\pi}
$$

If $f(n):=a_{n}$ for all $n \geq 0$, consider the following sequences associated to f:

- the (classical) cumulant sequence $\left(k_{n}(f)_{n}\right)_{n \geq 0}$:

$$
k_{n}(f):=\sum_{\pi \in \Pi(n)} \mu(\widehat{0}, \pi) f(\pi) ;
$$

- the free cumulant sequence $\left(c_{n}(f)\right)_{n \geq 0}$:

$$
c_{n}(f):=\sum_{\pi \in N C(n)} \mu(\widehat{0}, \pi) f(\pi)
$$

- the boolean sequence $\left(\mathrm{b}_{\mathfrak{n}}(\mathrm{f})\right)_{\mathrm{n} \geq 0}$:

$$
\mathrm{b}(\mathrm{f})_{\mathrm{n}}:=\sum_{\pi \in \mathbb{N C _ { \text { int } } (\mathfrak { n })}} \mu(\widehat{0}, \pi) \mathrm{f}(\pi)
$$

For example,

$$
f(\{\{3,8,9\},\{1,2\},\{6\},\{4,6,7\}\})=\mathbf{a}_{|\{3,8,9\}|} \cdot \mathbf{a}_{|\{1,2\}|} \cdot \mathbf{a}_{|\{6\}|} \cdot \mathbf{a}_{|\{4,6,7\}|}=\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}^{2} .
$$

If $f(n):=a_{n}$ for all $n \geq 0$, consider the following sequences associated to f:
■ the (classical) cumulant sequence $\left(k_{n}(f)\right)_{n \geq 0}$:

$$
k_{n}(f):=\sum_{\pi \in \Pi(n)} \mu(\widehat{0}, \pi) f(\pi) ;
$$

- the free cumulant sequence $\left(c(f)_{n}\right)_{n \geq 0}$:

$$
c_{n}(f):=\sum_{\pi \in N C(n)} \mu(\widehat{0}, \pi) f(\pi) ;
$$

- the boolean sequence $\left(\mathrm{b}_{\mathrm{n}}(\mathrm{f})\right)_{\mathrm{n} \geq 0}$:

$$
b_{n}(f):=\sum_{\pi \in N C_{\text {int }(n)}} \mu(\widehat{0}, \pi) f(\pi)
$$

Goal: understand these new sequences when $f(n)$ arises as dimensions of combinatorial spaces.

Species

Species

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species was introduced by André Joyal in 1980. Species can be seen as a categorification of generating functions. It provides a categorical foundation for enumerative combinatorics.

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set. }
$$

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set. }
$$

A species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \mathrm{Vec} .
$$

The Cauchy product of two species p and q is given by

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

Species

A set-species is a functor

$$
\mathrm{p}: \operatorname{set}^{\times} \rightarrow \text { set }
$$

A species is a functor

$$
\mathrm{p}: \text { set }^{\times} \rightarrow \text { Vec. }
$$

The Cauchy product of two species p and q is given by

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

The category of species is symmetric monoidal. We can speak of monoids, comonoids, ..., in species.

$$
\mathrm{h}[\mathrm{~S}] \otimes \mathrm{h}[\mathrm{~T}] \xrightarrow{\mu_{\mathrm{S}, \mathrm{~T}}} \mathrm{~h}[\mathrm{I}] \quad \mathrm{h}[\mathrm{I}] \xrightarrow{\Delta_{\mathrm{S}, \mathrm{~T}}} \mathrm{~h}[\mathrm{~S}] \otimes \mathrm{h}[\mathrm{~T}] .
$$

Examples of species

■ Species E of sets:

$$
\mathrm{E}[\mathrm{I}]:=\mathbb{K}\left\{*_{\mathrm{I}}\right\} .
$$

■ Species E_{n} of n-sets:

$$
\mathrm{E}_{\mathrm{n}}[\mathrm{I}]:= \begin{cases}\mathbb{K}\left\{*_{\mathrm{I}}\right\}, & \text { if }|\mathrm{I}|=\mathrm{n} ; \\ (0), & \text { if }|\mathrm{I}| \neq \mathrm{n}\end{cases}
$$

- Species $X:=E_{1}$ of sets of one element.
- Species Π of partitions.
- Species L of linear orders.
- Species G of graphs:
$\mathrm{G}[\mathrm{I}]:=\mathbb{K}\{$ finite graphs with vertices in I$\}$.

Examples of species

- Species B of binary trees.
- Species \mathfrak{S} of permutations.

■ Species Braid of braid hyperplane arrangements.

Operations on species

- Sum of species

$$
(\mathrm{p}+\mathrm{q})[\mathrm{I}]:=\mathrm{p}[\mathrm{I}] \oplus \mathrm{q}[\mathrm{I}] .
$$

- Product of species (Cauchy product)

$$
(\mathrm{p} \cdot \mathrm{q})[\mathrm{I}]:=\bigoplus_{\mathrm{I}=\mathrm{S} \sqcup \mathrm{~T}} \mathrm{p}[\mathrm{~S}] \otimes \mathrm{q}[\mathrm{~T}] .
$$

Operations on species

- Composition of species

$$
(\mathrm{p} \circ \mathrm{q})[\mathrm{I}]:=\bigoplus_{\pi \in \Pi[I]} \mathrm{p}[\pi] \otimes \bigotimes_{B \in \pi} q[B] .
$$

Generating function of a species

To every species p it is associated its exponential generating function:

$$
p(x):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{K}} p[n] \frac{x^{n}}{n!} .
$$

We have:

$$
\begin{aligned}
(p+q)(x) & =p(x)+q(x), \\
(p \cdot q)(x) & =p(x) \cdot q(x) \\
(p \circ q)(x) & =p(x) \circ q(x) .
\end{aligned}
$$

For the last identity, $\mathrm{q}[\emptyset]:=(0)$.

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

This translates as,

$$
B=X+E_{2} \circ B,
$$

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

This translates as,

$$
B=X+E_{2} \circ B,
$$

which implies:

$$
B(x)=x+B(x)^{2} / 2
$$

Therefore,

$$
B(x)=1-\sqrt{1-2 x}=\sum_{n \geq 1} 1 \cdot 3 \cdot 5 \cdots \cdot(2 n-3) \frac{x^{n}}{n!} .
$$

Cumulants from species
Based on Aguiar, M., Mahajan, S. (2013). Hopf monoids in the category of species, Hopf algebras and tensor categories, 585, 17-124.

Marcelo Aguiar, Swapneel Mahajan

Cumulants from Hopf monoids

Let I be a finite set.
Let $\pi \vdash \mathrm{I}$ be a partition of I . For a species h, consider

$$
\mathrm{h}(\pi):=\bigotimes_{\mathrm{B} \in \pi} \mathrm{~h}[\mathrm{~B}] .
$$

Cumulants from Hopf monoids

Let I be a finite set.
Let $\pi \vdash$ I be a partition of I. For a species h, consider

$$
\mathrm{h}(\pi):=\bigotimes_{\mathrm{B} \in \pi} \mathrm{~h}[\mathrm{~B}] .
$$

The cumulants of h are the integers $k_{\pi}(h)$ defined by

$$
k_{\pi}(h)=\sum_{\tau: \tau \geq \pi} \mu(\pi, \tau) \operatorname{dim}_{\mathbb{k}} h(\tau)
$$

Cumulants from Hopf monoids (Aguiar-Mahajan)

The cumulants of h are the integers $k_{X}(h)$ defined by

$$
k_{\pi}(h)=\sum_{\tau: \tau \geq \pi} \mu(\pi, \tau) \operatorname{dim}_{\mathbb{k}} h(\tau),
$$

where

$$
\mu(\pi, \tau)=(-1)^{\ell(\tau)-\ell(\pi)} \prod_{B \in \tau}\left(n_{B}-1\right)!.
$$

Cumulants from Hopf monoids (Aguiar-Mahajan)

The cumulants of h are the integers $k_{X}(h)$ defined by

$$
k_{\pi}(h)=\sum_{\tau: \tau \geq \pi} \mu(\pi, \tau) \operatorname{dim}_{\mathbb{k}} h(\tau)
$$

where

$$
\mu(\pi, \tau)=(-1)^{\ell(\tau)-\ell(\pi)} \prod_{B \in \tau}\left(n_{B}-1\right)!
$$

The n-th cumulant is

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h}):=\mathrm{k}_{\{\mathrm{I}\}}(\mathrm{h}),
$$

where $|\mathrm{I}|=\mathrm{n}$ and $\{\mathrm{I}\}$ is the partition of I with one block.

Cumulants from Hopf monoids (Aguiar-Mahajan)

The cumulants of h are the integers $k_{X}(h)$ defined by

$$
\mathrm{k}_{\pi}(\mathrm{h})=\sum_{\tau: \tau \geq \pi} \mu(\pi, \tau) \operatorname{dim}_{\mathbb{k}} \mathrm{h}(\tau)
$$

where

$$
\mu(\pi, \tau)=(-1)^{\ell(\tau)-\ell(\pi)} \prod_{B \in \tau}\left(n_{B}-1\right)!
$$

The n-th cumulant is

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h}):=\mathrm{k}_{\{\mathrm{II}\}}(\mathrm{h}),
$$

where $|\mathrm{I}|=\mathrm{n}$ and $\{\mathrm{I}\}$ is the partition of I with one block. Therefore,

$$
\mathrm{k}_{\mathrm{n}}(\mathrm{~h})=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} \mathrm{h}(\pi) .
$$

Hopf monoid	Moments	Cumulants	Distribution
L linear orders	$\mathrm{n}!$	$(\mathrm{n}-1)!$	Exponential of par. 1
E sets	1	$\delta_{n, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{n}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \frac{\mathrm{k}^{n}}{2^{\mathrm{k}}}$	Geometric of par. 1

Hopf monoid	Moments	Cumulants	Distribution
L linear orders	$\mathrm{n}!$	$(\mathrm{n}-1)!$	Exponential of par. 1
E sets	1	$\delta_{\mathrm{n}, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{\mathrm{n}}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \frac{\mathrm{k}^{n}}{2^{\mathrm{k}}}$	Geometric of par. 1

From the formula

$$
k_{n}(h)=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

it is not evident that the integers $k_{n}(h)$ are non-negative.

Hopf monoid	Moments	Cumulants	Distribution
L linear orders	$\mathrm{n}!$	$(\mathrm{n}-1)!$	Exponential of par. 1
E sets	1	$\delta_{\mathrm{n}, 1}$	Dirac measure $\delta=1$
Π partitions	Bell $_{\mathrm{n}}$	1	Poisson of par. 1
Σ ordered partitions	OrdBell $_{\mathrm{n}}$	$\sum_{\mathrm{k} \geq 1} \frac{\mathrm{k}^{n}}{2^{\mathrm{k}}}$	Geometric of par. 1

From the formula

$$
k_{n}(h)=\sum_{\pi \vdash \mathrm{I}} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

it is not evident that the integers $k_{n}(h)$ are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid h , the dimension of its primitive part is

$$
\operatorname{dim}_{\mathbb{k}} \mathcal{P}(\mathrm{h})[\mathrm{I}]=\mathrm{k}_{|\mathrm{I}|}(\mathrm{h}) .
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{I\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

The boolean cumulants of h are the integers $b_{n}(h)$ defined by

$$
b_{n}(h)=\sum_{\pi \in N C_{\text {lnt }}(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Free and boolean cumulants of h

The free cumulants of h are the integers $c_{n}(h)$ defined by

$$
c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

The boolean cumulants of h are the integers $b_{n}(h)$ defined by

$$
b_{\mathfrak{n}}(h)=\sum_{\pi \in N C_{\operatorname{lnt}}(\mathfrak{n})} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
$$

Question: are these integers non-negative? What conditions on h ?

Generating functions

Given a species h, the ordinary, type and exponential generating functions of h are, respectively,

$$
\begin{gathered}
\operatorname{Exp}_{h}(z):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] \frac{z^{n}}{n!}, \quad T_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n]_{\mathfrak{S}_{n}} z^{n} \\
O_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] z^{n} .
\end{gathered}
$$

Generating functions

Given a species h, the ordinary, type and exponential generating functions of h are, respectively,

$$
\begin{gathered}
\operatorname{Exp}_{h}(z):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] \frac{z^{n}}{n!}, \quad T_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n]_{\mathfrak{S}_{n}} z^{n} \\
O_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] z^{n} .
\end{gathered}
$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1-1 / O_{h}(z) \in \mathbb{N}[[z]]$.

Generating functions

Given a species h, the ordinary, type and exponential generating functions of h are, respectively,

$$
\begin{gathered}
\operatorname{Exp}_{h}(z):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] \frac{z^{n}}{n!}, \quad T_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n]_{\mathfrak{S}_{n}} z^{n} \\
O_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] z^{n} .
\end{gathered}
$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1-1 / O_{h}(z) \in \mathbb{N}[[z]]$.
The coefficient of z^{n} in $1-1 / O_{h}(z)$ is precisely $b_{n}(h)$.

Generating functions

Given a species h, the ordinary, type and exponential generating functions of h are, respectively,

$$
\begin{gathered}
\operatorname{Exp}_{h}(z):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] \frac{z^{n}}{n!}, \quad T_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n]_{\mathfrak{S}_{n}} z^{n} \\
O_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] z^{n} .
\end{gathered}
$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1-1 / O_{h}(z) \in \mathbb{N}[[z]]$.
The coefficient of z^{n} in $1-1 / O_{h}(z)$ is precisely $b_{n}(h)$.
No assumptions on cocommutativity.

Generating functions

Given a species h, the ordinary, type and exponential generating functions of h are, respectively,

$$
\begin{gathered}
\operatorname{Exp}_{h}(z):=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] \frac{z^{n}}{n!}, \quad T_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n]_{\mathfrak{S}_{n}} z^{n} \\
O_{h}(z)=\sum_{n \geq 0} \operatorname{dim}_{\mathbb{k}} h[n] z^{n} .
\end{gathered}
$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1-1 / O_{h}(z) \in \mathbb{N}[[z]]$.
The coefficient of z^{n} in $1-1 / O_{h}(z)$ is precisely $b_{n}(h)$.
No assumptions on cocommutativity. What about $\mathrm{c}_{\mathrm{n}}(\mathrm{h})$?

Recall that the composition of species is given by

$$
(\mathrm{p} \circ \mathrm{q})[\mathrm{I}]:=\bigoplus_{\pi \in \Pi[\mathrm{I}]} \mathrm{p}[\pi] \otimes \bigotimes_{\mathrm{B} \in \pi} \mathrm{q}[\mathrm{~B}] .
$$

Recall that the composition of species is given by

$$
(\mathrm{p} \circ \mathrm{q})[\mathrm{I}]:=\bigoplus_{\pi \in \Pi[\mathrm{I}]} \mathrm{p}[\pi] \otimes \bigotimes_{\mathrm{B} \in \pi} \mathrm{q}[\mathrm{~B}] .
$$

Let $k \geq 0$. Given a species p, the k-divided power of p is the species $\gamma_{k}(p)$ of all k-assemblies of p-structures:

$$
\gamma_{\mathrm{k}}(\mathrm{p})[\mathrm{I}]:=\bigoplus_{\pi \in \Pi_{\mathrm{k}}[\mathrm{I}]} \mathrm{p}(\pi) .
$$

Then,

$$
(p \circ q)[I]=\sum_{k \geq 0} p[k] \otimes \gamma_{k}(p)[I] .
$$

Non-crossing composition

Given a linear species r, consider the new species $\vec{\gamma}_{k}(r)$ given by

$$
\vec{\gamma}_{k}(r)[I]:=\bigoplus_{\pi \in \mathrm{NC}_{k}(\mathrm{I})} r(\pi)
$$

Non-crossing composition

Given a linear species r, consider the new species $\vec{\gamma}_{k}(r)$ given by

$$
\vec{\gamma}_{k}(r)[I]:=\bigoplus_{\pi \in N C_{k}(I)} r(\pi) .
$$

For every species p, we define the non-crossing k-divided power of p as

$$
\gamma_{k}^{N C}(p):=\mathrm{L} \times \vec{\gamma}_{k}(\mathrm{p})
$$

Non-crossing composition

Given a linear species r, consider the new species $\vec{\gamma}_{k}(r)$ given by

$$
\vec{\gamma}_{\mathrm{k}}(\mathrm{r})[\mathrm{I}]:=\bigoplus_{\pi \in N C_{k}(\mathrm{I})} r(\pi) .
$$

For every species p, we define the non-crossing k-divided power of p as

$$
\gamma_{\mathrm{k}}^{\mathrm{NC}}(\mathrm{p}):=\mathrm{L} \times \vec{\gamma}_{\mathrm{k}}(\mathrm{p})
$$

The non-crossing composition of two species p and q is defined as

$$
\left(p \circ_{N C} q\right)[I]:=\sum_{k \geq 0} p[k] \otimes \gamma_{k}^{N C}(q)[I] .
$$

Non-crossing composition

Given a linear species r, consider the new species $\vec{\gamma}_{k}(r)$ given by

$$
\vec{\gamma}_{k}(r)[I]:=\bigoplus_{\pi \in N C_{k}(I)} r(\pi) .
$$

For every species p, we define the non-crossing k-divided power of p as

$$
\gamma_{\mathrm{k}}^{\mathrm{NC}}(\mathrm{p}):=\mathrm{L} \times \vec{\gamma}_{\mathrm{k}}(\mathrm{p})
$$

The non-crossing composition of two species p and q is defined as

$$
\left(p \circ_{N C} q\right)[I]:=\sum_{k \geq 0} p[k] \otimes \gamma_{k}^{N C}(q)[I] .
$$

For example, $\mathrm{E} \circ \mathrm{E}_{+}$is the species of partitions, while $\mathrm{E} \circ_{N C} \mathrm{E}_{+}$is the species of non-crossing partitions.

Non-crossing composition

Given two ordinary generating functions

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n} \quad, \quad B(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

with $b_{0}=0$, the non-crossing composition of series is

$$
\left(A \circ_{N C} B\right)(z):=\sum_{n \geq 0}\left(\sum_{k \geq 0} k!a_{k} \sum_{\pi \in N C_{k}(n)} \pi!b_{\pi}\right) z^{n}
$$

Non-crossing composition

Given two ordinary generating functions

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n} \quad, \quad B(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

with $\mathrm{b}_{0}=0$, the non-crossing composition of series is

$$
\left(A \circ_{N C} B\right)(z):=\sum_{n \geq 0}\left(\sum_{k \geq 0} k!a_{k} \sum_{\pi \in N C_{k}(n)} \pi!b_{\pi}\right) z^{n}
$$

Proposition (V. - 2023)

Given species p and q , with $\mathrm{q}[\emptyset]=0$, we have

$$
\operatorname{Exp}_{\mathrm{po}_{\mathrm{NC}} \mathrm{q}}(z)=\left(\operatorname{Exp}_{\mathrm{p}} \circ_{\mathrm{NC}} \operatorname{Exp}_{\mathrm{q}}\right)(z)
$$

Non-crossing composition

The exponential formula in combinatorics can be expressed in term of species as

$$
\begin{aligned}
\operatorname{Exp}_{\text {Eop }}(z) & =\left(\operatorname{Exp}_{\mathrm{E}} \circ \operatorname{Exp}_{\mathrm{p}}\right)(z) \\
& =e^{\operatorname{Exp}_{\mathrm{p}}(z)} .
\end{aligned}
$$

Non-crossing composition

The exponential formula in combinatorics can be expressed in term of species as

$$
\begin{aligned}
\operatorname{Exp}_{\text {Eop }}(z) & =\left(\operatorname{Exp}_{\mathrm{E}} \circ \operatorname{Exp}_{\mathrm{p}}\right)(z) \\
& =e^{\operatorname{Exp}_{\mathrm{p}}(z)} .
\end{aligned}
$$

Corollary (V. 2023)

There is a non-crossing exponential formula as follows:

$$
\operatorname{Exp}_{\operatorname{Eo}_{N C} p}(z)=\left(\operatorname{Exp}_{\mathrm{E}} \circ_{N C} \operatorname{Exp}_{\mathrm{p}}\right)(z) .
$$

Let h be a species. Recall that we have sequences of type of cumulants associated to h :

$$
\begin{gathered}
k_{n}(h)=\sum_{\pi \in \Pi(n)} \mu(\{I\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi), c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{I\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) . \\
b_{n}(h)=\sum_{\pi \in N C_{\operatorname{lnt}}(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
\end{gathered}
$$

Let h be a species. Recall that we have sequences of type of cumulants associated to h :

$$
\begin{gathered}
k_{n}(h)=\sum_{\pi \in \Pi(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi), c_{n}(h)=\sum_{\pi \in N C(n)} \mu(\{I\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) . \\
b_{n}(h)=\sum_{\pi \in N C_{\operatorname{lnt}}(n)} \mu(\{\mathrm{I}\}, \pi) \operatorname{dim}_{\mathbb{k}} h(\pi) .
\end{gathered}
$$

Corollary (V. - 2023)

Let p be a positive species.
■ if $\mathrm{h}=\mathrm{E} \circ \mathrm{p}$, then, $\mathrm{k}_{|\mathrm{I}|}(\mathrm{h})=\operatorname{dim}_{\mathbb{k}} \mathrm{p}[\mathrm{I}]$;
■ if $\mathrm{h}=\mathrm{E} \circ_{\mathrm{NC}} \mathrm{p}$, then, $\mathrm{c}_{|\mathrm{I}|}(\mathrm{h})=\operatorname{dim}_{\mathbb{k}} \mathrm{p}[\mathrm{I}]$;

- if $\mathrm{h}=\mathrm{E} \diamond \mathrm{p}$, then, $\mathrm{b}_{|\mathrm{I}|}(\mathrm{h})=\operatorname{dim}_{\mathbb{k}} \mathrm{p}[\mathrm{I}]$.

Non-commutative probability

Classical probability space

Andrey Kolmogorov

A probability space (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- a collection \mathcal{F} (event space),

■ $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ (probability function),
satisfying several axioms.

Expectation: for every random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)
$$

Intuition: replace $\left(\mathrm{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$ by a more general pair (\mathcal{A}, φ).

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C};
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C};
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

Examples: $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right),\left(\operatorname{Mat}_{n}(\mathbb{C}), \frac{1}{n} \operatorname{Tr}\right),\left(\operatorname{Mat}_{n}(\Omega), \varphi\right)$.

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C};
- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

Examples: $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right),\left(\operatorname{Mat}_{n}(\mathbb{C}), \frac{1}{n} \operatorname{Tr}\right),\left(\operatorname{Mat}_{n}(\Omega), \varphi\right)$.

$$
\varphi(a):=\int_{\Omega} \operatorname{tr}(a(\omega)) d \mathbb{P}(\omega)
$$

- The field of Free Probability was created by Dan Voiculescu in the 1980s.
- Philosophy: investigate the notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory.
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s.
- Voiculescu discovered freeness also asymptotically for many kinds of random matrices (1991).

Dan Voiculescu, 2015

Non-commutative probability space

A non-commutative probability space is a pair (\mathcal{A}, φ) such that
■ \mathcal{A} is a unital associative algebra over \mathbb{C};

- $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear functional such that $\varphi\left(1_{\mathcal{A}}\right)=1$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y: \Omega \rightarrow \mathbb{C}$ implies

$$
\mathbb{E}\left(X^{\mathfrak{m}} Y^{n}\right)=\mathbb{E}\left(X^{m}\right) \mathbb{E}\left(Y^{n}\right) .
$$

Non-commutative independence

Let (\mathcal{A}, φ) be a non-commutative probability space. Consider $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ unital subalgebras of \mathcal{A}. Let $a_{1} \in \mathcal{A}_{\mathfrak{i}_{1}}, \ldots, a_{n} \in \mathcal{A}_{i_{n}}$ such that $\mathfrak{i}_{j} \neq \mathfrak{i}_{j+1}$.

The family $\left\{\mathcal{A}_{i}\right\}_{i \in \mathrm{I}}$ is

- freely independent if

$$
\varphi\left(a_{1} \cdots a_{n}\right)=0
$$

when $\varphi\left(\mathfrak{a}_{\mathfrak{j}}\right)=0$, for all $1 \leq \mathfrak{j} \leq \mathfrak{n}$;

- boolean independent if

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right) ;
$$

Other notions: monotone independence, conditional monotone, ...

Moment to cumulant relations in (\mathcal{A}, φ)

Consider the multilinear functionals
$\left\{r_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{n \geq 1} \quad\left\{b_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{\mathfrak{n} \geq 1} \quad\left\{h_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}\right\}_{\mathfrak{n} \geq 1}$
(Free cumulants) ' (Boolean cumulants)' (Monotone cumulants)
defined by

$$
\begin{aligned}
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} r_{\pi}\left(a_{1}, \ldots, a_{n}\right), \\
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C_{\text {lnt }}(n)} b_{\pi}\left(a_{1}, \ldots, a_{n}\right), \\
& \varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \frac{1}{\tau(\pi)!} h_{\pi}\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.

■ $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.

■ $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.

- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.

■ $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.

- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.
- The space $\left(\operatorname{Hom}_{\text {lin }}(H, \mathbb{K}),<,>\right)$ is a dendriform algebra, with * $=<+>$.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.
- $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.
- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.
- The space $\left(\operatorname{Hom}_{\text {lin }}(H, \mathbb{K}),<,>\right)$ is a dendriform algebra, with * $=<+>$.
- The linear form φ is extended to $\mathrm{T}_{+}(\mathcal{A})$ by defining to all words $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot \mathcal{A} a_{2} \cdot \mathcal{A} \cdots \mathcal{A}_{\mathcal{A}} a_{n}\right) .
$$

This is the multivariate moment of u.

Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

- (\mathcal{A}, φ) non-commutative probability space.
- $\mathrm{H}=\mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \quad$ words on non-empty words on \mathcal{A}.
- The coproduct Δ in H is codendriform: $\Delta=\Delta_{<}+\Delta_{>}$.
- The space $\left(\operatorname{Hom}_{\text {lin }}(H, \mathbb{K}),<,>\right)$ is a dendriform algebra, with * $=<+>$.
- The linear form φ is extended to $\mathrm{T}_{+}(\mathcal{A})$ by defining to all words $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right):=\varphi\left(a_{1} \cdot \mathcal{A} a_{2} \cdot \mathcal{A} \cdots{ }_{\mathcal{A}} a_{n}\right) .
$$

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map $\Phi: \mathrm{T}\left(\mathrm{T}_{+}(\mathcal{A})\right) \rightarrow \mathbb{K}$ with $\Phi(1):=1$ and

$$
\Phi\left(\mathfrak{u}_{1}|\cdots| \mathfrak{u}_{k}\right):=\varphi\left(\mathfrak{u}_{1}\right) \cdots \varphi\left(\mathfrak{u}_{k}\right) .
$$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let $\rho, \kappa, \beta \in \mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

$$
\begin{gathered}
\Phi=\exp _{*}(\rho), \\
\Phi=\epsilon+\kappa \prec \Phi
\end{gathered}
$$

and

$$
\Phi=\epsilon+\Phi \succ \beta
$$

Then, ρ, k, β correspond to the monotone cumulants, free cumulants and boolean cumulants, respectively.

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let $\rho, \kappa, \beta \in \mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

$$
\begin{gathered}
\Phi=\exp _{*}(\rho), \\
\Phi=\epsilon+\kappa \prec \Phi
\end{gathered}
$$

and

$$
\Phi=\epsilon+\Phi \succ \beta .
$$

Then, ρ, κ, β correspond to the monotone cumulants, free cumulants and boolean cumulants, respectively.

For any word $u=a_{1} \cdots a_{n} \in \mathcal{A}^{\otimes n}$, we have

$$
h_{n}\left(a_{1}, \ldots, a_{n}\right)=\rho(u), r_{n}\left(a_{1}, \ldots, a_{n}\right)=\kappa(u), b_{n}\left(a_{1}, \ldots, a_{n}\right)=\beta(u)
$$

Series on species

From species to vector spaces I

There are functors
$\mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}:$ Hopf monoids in species $\rightarrow \mathbb{N}$-graded Hopf algebras.

$$
\begin{gathered}
\mathcal{K}(h)=\mathcal{K}^{\vee}(h):=\bigoplus_{n \geq 0} h[n] \\
\overline{\mathcal{K}}(h):=\bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_{n}} \quad, \quad \overline{\mathcal{K}}^{\vee}(h):=\bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_{n}}
\end{gathered}
$$

From species to vector spaces I

There are functors
$\mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}:$ Hopf monoids in species $\rightarrow \mathbb{N}$-graded Hopf algebras.

$$
\begin{gathered}
\mathcal{K}(h)=\mathcal{K}^{\vee}(h):=\bigoplus_{n \geq 0} h[n] \\
\overline{\mathcal{K}}(h):=\bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_{n}} \quad, \quad \overline{\mathcal{K}}^{\vee}(h):=\bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_{n}}
\end{gathered}
$$

Patras-Schocker-Reutenauer:
$\mathcal{K}(\mathrm{h})$: cosymmetrized bialgebra
$\mathcal{K}^{\vee}(\mathrm{h})$: symmetrized bialgebra

From species to vector spaces I

There are functors
$\mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}:$ Hopf monoids in species $\rightarrow \mathbb{N}$-graded Hopf algebras.

$$
\begin{gathered}
\mathcal{K}(h)=\mathcal{K}^{\vee}(h):=\bigoplus_{n \geq 0} h[n] \\
\overline{\mathcal{K}}(h):=\bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_{n}} \quad, \quad \overline{\mathcal{K}}^{\vee}(h):=\bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_{n}}
\end{gathered}
$$

- $\mathcal{K}(\mathrm{h}) \cong \overline{\mathcal{K}}(\mathrm{L} \times \mathrm{h})$.
- If h is finite-dimensional, then $\overline{\mathcal{K}}\left(h^{*}\right) \cong \overline{\mathcal{K}}(h)^{*}$.
- If h is cocommutative, then so are $\mathcal{K}(h)$ and $\overline{\mathcal{K}}(h)$.
- If h is commutative, so is $\overline{\mathcal{K}}(h)$.

From species to vector spaces II

Let p be a species.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}},
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}}
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.
The space $\mathscr{S}(\mathrm{p})$ of all series of p is a vector space:

$$
(s+t)_{\mathrm{I}}=\mathrm{s}_{\mathrm{I}}+\mathrm{t}_{\mathrm{I}} \quad, \quad(\lambda \cdot s)_{\mathrm{I}}:=\lambda s_{\mathrm{I}},
$$

for $\mathrm{s}, \mathrm{t} \in \mathscr{S}(\mathrm{p})$ and $\lambda \in \mathbb{K}$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}},
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I , such that

$$
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}},
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.
Let E be the exponential map. A series s of p corresponds to the morphism of species

$$
\begin{gathered}
\mathrm{E} \rightarrow \mathrm{p} \\
*_{\mathrm{I}} \mapsto \mathrm{~s}_{\mathrm{I}}
\end{gathered}
$$

so $\mathscr{S}(\mathrm{p}) \cong \operatorname{Hom}_{\mathrm{Sp}}(\mathrm{E}, \mathrm{p})$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\begin{equation*}
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}} \tag{1}
\end{equation*}
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I , such that

$$
\begin{equation*}
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}}, \tag{1}
\end{equation*}
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.
Property (2) implies that each $s_{[n]}$ is an \mathfrak{S}_{n}-invariant element of $p[n]$. In fact,

$$
\begin{aligned}
\mathscr{S}(p) & \cong \prod_{n \geq 0} p[n]^{\mathfrak{S}_{n}} \\
s & \mapsto\left(s_{[n]}\right)_{n \geq 0}
\end{aligned}
$$

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\begin{equation*}
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}} \tag{2}
\end{equation*}
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.

From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

$$
\mathrm{s}_{\mathrm{I}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I, such that

$$
\begin{equation*}
\mathrm{p}[\sigma]\left(\mathrm{s}_{\mathrm{I}}\right)=\mathrm{s}_{\mathrm{J}} \tag{2}
\end{equation*}
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.
There is a functor

$$
\mathscr{S}: \mathrm{Sp} \rightarrow \mathrm{Vec} .
$$

The functor \mathscr{S} is braided lax monoidal: it preserves monoids, commutative monoids, Lie monoids...

Decorated series

Let V be a vector space.

Decorated series

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $E \rightarrow p$.

Decorated series

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $E \rightarrow p$.

A V-decorated series, or decorated series, is a morphism of species

$$
\mathrm{E}_{V} \rightarrow \mathrm{p},
$$

where E_{V} is the exponential decorated exponential given by

$$
\mathrm{E}_{\mathrm{V}}[\mathrm{I}]:=\mathbb{K}\{\mathrm{f}: \mathrm{I} \rightarrow \mathrm{~V}\}
$$

Let $\mathscr{S}_{V}(\mathrm{p})$ be the space of decorated series.

Decorated series

A series s in $\mathscr{S}_{V}(\mathrm{p})$ is a collection of elements

$$
s_{\mathrm{I}, \mathrm{f}} \in \mathrm{p}[\mathrm{I}],
$$

one for each finite set I and for each map $f: I \rightarrow V$, such that

$$
\mathrm{p}[\sigma]\left(s_{\mathrm{I}, \mathrm{f}}\right)=\mathrm{s}_{\mathrm{J}, f \circ \sigma^{-1}},
$$

for each bijection $\sigma: I \rightarrow \mathrm{~J}$.

Cumulants from decorated series (V., 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space.

Cumulants from decorated series (V., 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider the ripping and sewing Hopf monoid P .

Cumulants from decorated series (V., 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider the ripping and sewing Hopf monoid P. As a species, $P=L \circ L_{+}$.

Cumulants from decorated series (V., 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space.
Consider the ripping and sewing Hopf monoid P. As a species, $P=L \circ L_{+}$.
Define $\Phi \in \mathscr{S}_{\mathcal{A}}\left(\mathrm{P}^{*}\right)$ as follows: if I is a finite set and $\mathrm{f}: \mathrm{I} \rightarrow \mathcal{A}$, let

$$
\Phi_{\mathrm{I}, \mathrm{f}} \in \mathrm{P}^{*}[\mathrm{I}]
$$

given by

$$
\Phi_{\mathrm{I}, \mathrm{f}}\left(w_{1} w_{2} \cdots w_{\mathrm{n}}\right):=\varphi\left(w_{1}\right) \cdots \varphi\left(w_{\mathrm{n}}\right),
$$

where for each $w_{k}=x_{1}^{k} \cdots x_{r}^{k} \in L_{+}\left[I_{k}\right]$,

$$
\varphi(w):=(\varphi \circ f)\left(x_{1}^{k}\right) \cdots(\varphi \circ f)\left(x_{r}^{k}\right)
$$

Cumulants from decorated series

Proposition (V. - 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space. For every species p, consider the space $\mathrm{C}_{\mathcal{A}}(p):=\mathscr{S}_{\mathcal{A}}\left(\left(L \circ p_{+}\right)^{*}\right)$.

- Classical cumulants are obtained from $p=X$
- Non-commutative cumulants are obtained from $p=L$

Problem : structure on p giving a more general ripping and sewing coproduct on the free monoid $\mathrm{L} \circ \mathrm{p}_{+}$?
(In progress: structure of hereditary species on p)

Cumulants from decorated series

Proposition (V. - 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space. For every species p, consider the space $\mathrm{C}_{\mathcal{A}}(p):=\mathscr{S}_{\mathcal{A}}\left(\left(L \circ p_{+}\right)^{*}\right)$.

- Classical cumulants are obtained from $p=X$

■ Non-commutative cumulants are obtained from $p=L$

Cumulants from decorated series

Proposition (V. - 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space. For every species p, consider the space $\mathrm{C}_{\mathcal{A}}(p):=\mathscr{S}_{\mathcal{A}}\left(\left(L \circ p_{+}\right)^{*}\right)$.

- Classical cumulants are obtained from $p=X$

■ Non-commutative cumulants are obtained from $p=L$
■ More general notion (replace the algebra \mathcal{A} by a monoid in species h):

$$
\mathrm{C}_{\mathrm{h}}(\mathrm{p}):=\mathscr{S}\left(\mathcal{H}\left(\mathrm{h},\left(\mathrm{~L} \circ \mathrm{p}_{+}\right)^{*}\right)\right)
$$

Cumulants from decorated series

Proposition (V. - 2023)

Let (\mathcal{A}, φ) be a non-commutative probability space. For every species p, consider the space $\mathrm{C}_{\mathcal{A}}(p):=\mathscr{S}_{\mathcal{A}}\left(\left(L \circ p_{+}\right)^{*}\right)$.

- Classical cumulants are obtained from $p=X$

■ Non-commutative cumulants are obtained from $p=L$
■ More general notion (replace the algebra \mathcal{A} by a monoid in species h):

$$
\mathrm{C}_{\mathrm{h}}(\mathrm{p}):=\mathscr{S}\left(\mathcal{H}\left(\mathrm{h},\left(\mathrm{~L} \circ \mathrm{p}_{+}\right)^{*}\right)\right) .
$$

Particular case: $\mathrm{p}:=\mathrm{X},(\mathrm{h}, \varphi)$ a connected bimonoid with

$$
\varphi_{\mathrm{I}}(\mathrm{x}):=\operatorname{dim}_{\mathbb{K}} \mathrm{h}[\mathrm{I}]
$$

for all $x \in h[I]$.

Work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formulae.
- Universality of $\mathrm{E} \circ_{\mathrm{NC}} \mathrm{P}$ (analogue to the free and cofree monoid in species).
■ Operadic notion using non-crossing composition (rigid and classic species).
- What's next?

Geometrical notion of independence(s)?

Polytope	Hopf monoid	Independence
Permutahedron	Π	Classical
Associahedron	F	Monotone
Cyclohedron	C	Conditional monotone
\vdots	\vdots	\vdots

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner (ANR-FWF International Cooperation Project PAGCAP - Beyond Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and Probability).

Merci!

References I

E Marcelo Aguiar and Swapneel Mahajan. Hopf monoids in the category of species. Hopf algebras and tensor categories, 585:17-124, 2013.
: Octavio Arizmendi and Adrián Celestino. Monotone cumulant-moment formula and schrǿder trees. arXiv preprint arXiv:2111.02179, 2021.

固 Kurusch Ebrahimi-Fard and Frédéric Patras.
A group-theoretical approach to conditionally free cumulants.
arXiv preprint arXiv:1806.06287, 2018.

References II

围 Hillary Einziger.
Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions.
PhD thesis, The George Washington University, 2010.
圊 Takahiro Hasebe and Franz Lehner.
Cumulants, spreadability and the campbell-baker-hausdorff series.
arXiv preprint arXiv:1711.00219, 2017.
(Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.
Free cumulants, schrøder trees, and operads.
Advances in Applied Mathematics, 88:92-119, 2017.

References III

围 Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.
Free cumulants, schrǿder trees, and operads.
Advances in Applied Mathematics, 88:92-119, 2017.
Franz Lehner, Jean-Christophe Novelli, and Jean-Yves Thibon.
Combinatorial hopf algebras in noncommutative probabilility. arXiv preprint arXiv:2006.02089, 2020.

固 Naofumi Muraki.
The five independences as natural products. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(03):337-371, 2003.

References IV

围 Yannic Vargas.
Cumulant to moment relations, antipode formulas and mobius inversion.
In preparation, 2022.
固 Dan Voiculescu.
Symmetries of some reduced free product c*-algebras.
In Operator algebras and their connections with topology and ergodic theory, pages 556-588. Springer, 1985.

