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Sequences with a
combinatorial/probabilistic flavor



Let
a0, a1, a2, . . . , an, . . .

be a sequence of integers.

Combinatorialists: what do these numbers count (or represent)?

Probabilists: is this a moment/cumulant sequence?

Moment problem: (an)n is the sequence of moments of some measure if
and only if the Hankel matrices associated to the sequence are positive
definite.
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Let X be a random variable with distribution ψ and moments

mn = mn(X) =

∫
xndψ(x).

Let
F(z) =

∫
exzdψ(x) =

∑
n≥0

mn
zn

n!

be the formal Laplace transform. We can write this series as

F(z) = eK(z),

where
K(z) =

∑
n≥1

κn
zn

n!

is the cumulant generating function.
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By the exponential formula, since

F(z) = eK(z),

then we have
mπ =

∑
π≤τ

κτ,

where mπ = m|B1|m|B2| · · ·m|Bk| and κπ = κ|B1|κ|B2| · · · κ|Bk| if
π = {B1, B2, . . . , Bk}.

Here, ≤ corresponds to the poset of partitions Π(n) of the set
[n] := {1, 2, . . . , n} with the refinement order. The minimal element is the
partition {[n]}. Hence,

mn =
∑

π∈Π(n)

κπ and κn =
∑

π∈Π(n)

µ(0̂, π)mπ.
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If f(n) := an for all n ≥ 0, consider the following sequences associated to
f:

the (classical) cumulant sequence (kn(f)n)n≥0:

kn(f) :=
∑

π∈Π(n)

µ(0̂, π)f(π);

the free cumulant sequence (cn(f))n≥0:

cn(f) :=
∑

π∈NC(n)

µ(0̂, π)f(π);

the boolean sequence (bn(f))n≥0:

b(f)n :=
∑

π∈NCint(n)

µ(0̂, π)f(π)

For example,

f({{3,8,9},{1,2},{6},{4,6,7}})=a|{3,8,9}|·a|{1,2}|·a|{6}|·a|{4,6,7}|=a1a2a
2
3.
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Goal: understand these new sequences when f(n) arises as dimensions of
combinatorial spaces.



Species



Species

André Joyal, Alain Connes, Olivia Caramello
and Laurent Lafforgue, IHES (2015)

The theory of combinatorial species
was introduced by André Joyal in
1980. Species can be seen as a
categorification of generating
functions. It provides a categorical
foundation for enumerative
combinatorics.



Species

A set-species is a functor

p : set× → set.

A species is a functor
p : set× → Vec.

The Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ].

The category of species is symmetric monoidal.
We can speak of monoids, comonoids, ..., in species.

h[S]⊗ h[T ]
µS,T // h[I] h[I]

∆S,T // h[S]⊗ h[T ].



Species

A set-species is a functor

p : set× → set.

A species is a functor
p : set× → Vec.

The Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ].

The category of species is symmetric monoidal.
We can speak of monoids, comonoids, ..., in species.

h[S]⊗ h[T ]
µS,T // h[I] h[I]

∆S,T // h[S]⊗ h[T ].



Species

A set-species is a functor

p : set× → set.

A species is a functor
p : set× → Vec.

The Cauchy product of two species p and q is given by

(p · q)[I] =
⊕

I=S⊔T

p[S]⊗ q[T ].

The category of species is symmetric monoidal.
We can speak of monoids, comonoids, ..., in species.

h[S]⊗ h[T ]
µS,T // h[I] h[I]

∆S,T // h[S]⊗ h[T ].



Examples of species

Species E of sets:
E[I] := K{∗I}.

Species En of n-sets:

En[I] :=

{
K{∗I}, if |I| = n;
(0), if |I| ̸= n.

Species X := E1 of sets of one element.
Species Π of partitions.
Species L of linear orders.
Species G of graphs:

G[I] := K{ finite graphs with vertices in I }.



Examples of species

Species B of binary trees.
Species S of permutations.
Species Braid of braid hyperplane arrangements.



Operations on species

Sum of species
(p + q)[I] := p[I]⊕ q[I].

Product of species (Cauchy product)

(p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T ].



Operations on species

Composition of species

(p ◦ q)[I] :=
⊕

π∈Π[I]

p[π]⊗
⊗
B∈π

q[B].



Generating function of a species

To every species p it is associated its exponential generating function:

p(x) :=
∑
n≥0

dimK p[n]
xn

n!
.

We have:
(p + q)(x) = p(x) + q(x),

(p · q)(x) = p(x) · q(x),

(p ◦ q)(x) = p(x) ◦ q(x).

For the last identity, q[∅] := (0).



A labelled binary tree is:
a single labelled vertex (the root);
a couple of labelled binary trees, plus the labelled root.

This translates as,
B = X + E2 ◦ B,

which implies:
B(x) = x+ B(x)2/2.

Therefore,

B(x) = 1−
√
1− 2x =

∑
n≥1

1 · 3 · 5 · · · · · (2n− 3)x
n

n!
.
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Marcelo Aguiar, Swapneel Mahajan

Cumulants from species

Based on Aguiar, M., Mahajan, S.
(2013). Hopf monoids in the category
of species, Hopf algebras and tensor
categories, 585, 17-124.



Cumulants from Hopf monoids

Let I be a finite set.
Let π ⊢ I be a partition of I. For a species h, consider

h(π) :=
⊗
B∈π

h[B].

The cumulants of h are the integers kπ(h) defined by

kπ(h) =
∑

τ:τ≥π

µ(π, τ) dimk h(τ).
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Cumulants from Hopf monoids (Aguiar-Mahajan)

The cumulants of h are the integers kX(h) defined by

kπ(h) =
∑

τ:τ≥π

µ(π, τ) dimk h(τ),

where
µ(π, τ) = (−1)ℓ(τ)−ℓ(π)

∏
B∈τ

(nB − 1)!.

The n-th cumulant is
kn(h) := k{I}(h),

where |I| = n and {I} is the partition of I with one block. Therefore,

kn(h) =
∑
π⊢I

µ({I}, π) dimk h(π).
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Hopf monoid Moments Cumulants Distribution
L linear orders n! (n− 1)! Exponential of par. 1
E sets 1 δn,1 Dirac measure δ = 1
Π partitions Belln 1 Poisson of par. 1

Σ ordered partitions OrdBelln
∑
k≥1

kn

2k
Geometric of par. 1

From the formula

kn(h) =
∑
π⊢I

µ({I}, π) dimk h(π).

it is not evident that the integers kn(h) are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid h, the
dimension of its primitive part is

dimkP(h)[I] = k|I|(h).
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Free and boolean cumulants of h

The free cumulants of h are the integers cn(h) defined by

cn(h) =
∑

π∈NC(n)

µ({I}, π) dimk h(π).

The boolean cumulants of h are the integers bn(h) defined by

bn(h) =
∑

π∈NCInt(n)

µ({I}, π) dimk h(π).

Question: are these integers non-negative? What conditions on h?



Free and boolean cumulants of h

The free cumulants of h are the integers cn(h) defined by

cn(h) =
∑

π∈NC(n)

µ({I}, π) dimk h(π).

The boolean cumulants of h are the integers bn(h) defined by

bn(h) =
∑

π∈NCInt(n)

µ({I}, π) dimk h(π).

Question: are these integers non-negative? What conditions on h?



Free and boolean cumulants of h

The free cumulants of h are the integers cn(h) defined by

cn(h) =
∑

π∈NC(n)

µ({I}, π) dimk h(π).

The boolean cumulants of h are the integers bn(h) defined by

bn(h) =
∑

π∈NCInt(n)

µ({I}, π) dimk h(π).

Question: are these integers non-negative? What conditions on h?



Generating functions

Given a species h, the ordinary, type and exponential generating functions
of h are, respectively,

Exph(z) :=
∑
n≥0

dimk h[n]
zn

n!
, Th(z) =

∑
n≥0

dimk h[n]Sn z
n

Oh(z) =
∑
n≥0

dimk h[n] zn.

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then 1− 1/Oh(z) ∈ N[[z]].

The coefficient of zn in 1− 1/Oh(z) is precisely bn(h).

No assumptions on cocommutativity. What about cn(h)?
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Recall that the composition of species is given by

(p ◦ q)[I] :=
⊕

π∈Π[I]

p[π]⊗
⊗
B∈π

q[B].

Let k ≥ 0. Given a species p, the k-divided power of p is the species
γk(p) of all k-assemblies of p-structures:

γk(p)[I] :=
⊕

π∈Πk[I]

p(π).

Then,
(p ◦ q)[I] =

∑
k≥0

p[k]⊗ γk(p)[I].
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Non-crossing composition

Given a linear species r, consider the new species −→γ k(r) given by

−→γ k(r)[I] :=
⊕

π∈NCk(I)

r(π).

For every species p, we define the non-crossing k-divided power of p as
γNC
k (p) := L ×−→γ k(p).

The non-crossing composition of two species p and q is defined as

(p ◦NC q)[I] :=
∑
k≥0

p[k]⊗ γNC
k (q)[I].

For example, E ◦ E+ is the species of partitions, while E ◦NC E+ is the
species of non-crossing partitions.
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Non-crossing composition

Given two ordinary generating functions

A(z) =
∑
n≥0

anz
n , B(z) =

∑
n≥0

bnz
n,

with b0 = 0, the non-crossing composition of series is

(A ◦NC B)(z) :=
∑
n≥0

∑
k≥0

k!ak
∑

π∈NCk(n)

π!bπ

 zn.

Proposition (V. - 2023)

Given species p and q, with q[∅] = 0, we have

Expp◦NC q(z) = (Expp ◦NC Expq)(z).
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Non-crossing composition

The exponential formula in combinatorics can be expressed in term of
species as

ExpE◦p(z) = (ExpE ◦ Expp)(z)

= eExpp(z).

Corollary (V. 2023)

There is a non-crossing exponential formula as follows:

ExpE◦NC p(z) = (ExpE ◦NC Expp)(z).
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Let h be a species. Recall that we have sequences of type of cumulants
associated to h:

kn(h) =
∑

π∈Π(n)

µ({I}, π) dimk h(π), cn(h) =
∑

π∈NC(n)

µ({I}, π) dimk h(π).

bn(h) =
∑

π∈NCInt(n)

µ({I}, π) dimk h(π).

Corollary (V. - 2023)

Let p be a positive species.
if h = E ◦ p, then, k|I|(h) = dimk p[I];
if h = E ◦NC p, then, c|I|(h) = dimk p[I];
if h = E ⋄ p, then, b|I|(h) = dimk p[I].
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Corollary (V. - 2023)

Let p be a positive species.
if h = E ◦ p, then, k|I|(h) = dimk p[I];
if h = E ◦NC p, then, c|I|(h) = dimk p[I];
if h = E ⋄ p, then, b|I|(h) = dimk p[I].



Non-commutative probability



Classical probability space

Andrey Kolmogorov

A probability space (Kolmogorov,
1930’s) is given by the following
data:

a set Ω (sample space),
a collection F (event space),
P : F → [0, 1] (probability
function),

satisfying several axioms.

Expectation: for every random variable X ∈ L∞(Ω,F ,P), let

E[X] :=
∫
Ω

X(ω)dP(ω).

Intuition: replace (L∞(Ω,F ,P),E) by a more general pair (A, φ).



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A → C is a linear functional such that φ(1A) = 1.

Examples: (L∞(Ω,F ,P),E),
(
Matn(C), 1

n
Tr
)
, (Matn(Ω), φ).

φ(a) :=

∫
Ω

tr(a(ω))dP(ω)
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The field of Free Probability was
created by Dan Voiculescu in the
1980s.
Philosophy: investigate the
notion of “freeness" in analogy to
the concept of “independence”
from (classical) probability
theory.
A combinatorial theory of
freeness was developed by Nica
and Speicher in the 1990s.
Voiculescu discovered freeness
also asymptotically for many
kinds of random matrices (1991).

Dan Voiculescu , 2015



Non-commutative probability space

A non-commutative probability space is a pair (A, φ) such that
A is a unital associative algebra over C;
φ : A → C is a linear functional such that φ(1A) = 1.

In a (classical) probability space (Ω,F ,P), the notion of independence
between two random variables X, Y : Ω→ C implies

E(XmYn) = E(Xm)E(Yn).



Non-commutative independence

Let (A, φ) be a non-commutative probability space. Consider {Ai}i∈I
unital subalgebras of A. Let a1 ∈ Ai1, . . . , an ∈ Ain such that ij ̸= ij+1.

The family {Ai}i∈I is
freely independent if

φ(a1 · · ·an) = 0,

when φ(aj) = 0, for all 1 ≤ j ≤ n;
boolean independent if

φ(a1 · · ·an) = φ(a1) · · ·φ(an);

Other notions: monotone independence, conditional monotone, . . .



Moment to cumulant relations in (A, φ)

Consider the multilinear functionals

{rn : An → C}n≥1
( Free cumulants )

,
{bn : An → C}n≥1

( Boolean cumulants )
,

{hn : An → C}n≥1
( Monotone cumulants )

defined by

φ(a1 · · ·an) =
∑

π∈NC(n)

rπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NCInt(n)

bπ(a1, . . . , an),

φ(a1 · · ·an) =
∑

π∈NC(n)

1
τ(π)!

hπ(a1, . . . , an).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.

H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.

The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.

The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.

The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.

The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Algebraic approach to cumulants (Ebrahimi-Fard, Patras)

(A, φ) non-commutative probability space.
H = T(T+(A)) words on non-empty words on A.
The coproduct ∆ in H is codendriform: ∆ = ∆< + ∆>.
The space (Homlin(H,K), <,>) is a dendriform algebra, with
∗ =< + >.
The linear form φ is extended to T+(A) by defining to all words
u = a1 · · ·an ∈ A⊗n

φ(a1a2 · · ·an) := φ(a1 ·A a2 ·A · · · ·A an).

This is the multivariate moment of u.
The map φ is then extended multiplicatively to a map
Φ : T(T+(A)) → K with Φ(1) := 1 and

Φ(u1| · · · |uk) := φ(u1) · · ·φ(uk).



Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras -2015)

Let ρ, κ, β ∈ g(A) the infinitesimal characters solving

Φ = exp∗(ρ),

Φ = ϵ+ κ ≺ Φ

and
Φ = ϵ+Φ ≻ β.

Then, ρ, κ, β correspond to the monotone cumulants, free cumulants
and boolean cumulants, respectively.

For any word u = a1 · · ·an ∈ A⊗n, we have

hn(a1, . . . , an) = ρ(u), rn(a1, . . . , an) = κ(u), bn(a1, . . . , an) = β(u).
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Series on species



From species to vector spaces I

There are functors

K,K,K∨,K : Hopf monoids in species → N-graded Hopf algebras.

K(h) = K∨(h) :=
⊕
n≥0

h[n]

K(h) :=
⊕
n≥0

h[n]Sn , K∨
(h) :=

⊕
n≥0

h[n]Sn

Patras-Schocker-Reutenauer:

K(h) : cosymmetrized bialgebra

K∨(h) : symmetrized bialgebra
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From species to vector spaces I

There are functors

K,K,K∨,K : Hopf monoids in species → N-graded Hopf algebras.

K(h) = K∨(h) :=
⊕
n≥0

h[n]

K(h) :=
⊕
n≥0

h[n]Sn , K∨
(h) :=

⊕
n≥0

h[n]Sn

K(h) ∼= K(L × h).
If h is finite-dimensional, then K(h∗) ∼= K(h)∗.
If h is cocommutative, then so are K(h) and K(h).
If h is commutative, so is K(h).



From species to vector spaces II

Let p be a species.

A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ,

for each bijection σ : I→ J.

The space S (p) of all series of p is a vector space:

(s+ t)I = sI + tI , (λ · s)I := λ sI,

for s, t ∈ S (p) and λ ∈ K.



From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ,

for each bijection σ : I→ J.

The space S (p) of all series of p is a vector space:

(s+ t)I = sI + tI , (λ · s)I := λ sI,

for s, t ∈ S (p) and λ ∈ K.



From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ,

for each bijection σ : I→ J.

The space S (p) of all series of p is a vector space:

(s+ t)I = sI + tI , (λ · s)I := λ sI,

for s, t ∈ S (p) and λ ∈ K.



From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ,

for each bijection σ : I→ J.

Let E be the exponential map. A series s of p corresponds to the morphism
of species

E → p

∗I 7→ sI,

so S (p) ∼= HomSp(E, p).
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From species to vector spaces II

Let p be a species.
A series s of p is a collection of elements

sI ∈ p[I],

one for each finite set I, such that

p[σ](sI) = sJ, (1)

for each bijection σ : I→ J.

Property (2) implies that each s[n] is an Sn-invariant element of p[n]. In
fact,

S (p) ∼=
∏
n≥0

p[n]Sn

s 7→ (s[n])n≥0.
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The functor S is braided lax monoidal: it preserves monoids, commutative
monoids, Lie monoids . . .
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Decorated series

Let V be a vector space.

Recall that a series of p corresponds to a

morphism of species E → p.

A V-decorated series, or decorated series, is a morphism of species

EV → p,

where EV is the exponential decorated exponential given by

EV [I] := K{f : I→ V}.

Let SV(p) be the space of decorated series.
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A V-decorated series, or decorated series, is a morphism of species

EV → p,

where EV is the exponential decorated exponential given by

EV [I] := K{f : I→ V}.

Let SV(p) be the space of decorated series.



Decorated series

A series s in SV(p) is a collection of elements

sI,f ∈ p[I],

one for each finite set I and for each map f : I→ V , such that

p[σ](sI,f) = sJ,f◦σ−1,

for each bijection σ : I→ J.



Cumulants from decorated series (V., 2023)

Let (A, φ) be a non-commutative probability space.

Consider the ripping and sewing Hopf monoid P. As a species, P = L ◦ L+.

Define Φ ∈ SA(P∗) as follows: if I is a finite set and f : I→ A, let

ΦI,f ∈ P∗[I]

given by
ΦI,f(w1w2 · · ·wn) := φ(w1) · · ·φ(wn),

where for each wk = xk1 · · · xkr ∈ L+[Ik],

φ(w) := (φ ◦ f)(xk1 ) · · · (φ ◦ f)(xkr ).
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Cumulants from decorated series

Proposition (V. - 2023)

Let (A, φ) be a non-commutative probability space. For every species p,

consider the space CA(p) := SA((L ◦ p+)
∗).

Classical cumulants are obtained from p = X
Non-commutative cumulants are obtained from p = L

Problem : structure on p giving a more general ripping and sewing
coproduct on the free monoid L ◦ p+?

(In progress: structure of hereditary species on p)
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More general notion (replace the algebra A by a monoid in species h):

Ch(p) := S (H(h, (L ◦ p+)
∗)).

Particular case: p := X, (h, φ) a connected bimonoid with

φI(x) := dimKh[I],

for all x ∈ h[I].
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Work in progress

An algebraic model for several notions of non-commutative
independences was presented by Ebrahimi-Fard and Patras. It involves
infinitesimal characters on a certain Hopf algebra.
Understanding this approach in terms of species and algebraic
structures in the monoidal category of species (monoids, comonoids, lie
monoids, bimonoids) might give a better insight of the combinatorics
behind moment-to-cumulant formulae.
Universality of E ◦NC p (analogue to the free and cofree monoid in
species).
Operadic notion using non-crossing composition (rigid and classic
species).
What’s next?



Geometrical notion of independence(s)?

Polytope Hopf monoid Independence
Permutahedron Π Classical
Associahedron F Monotone
Cyclohedron C Conditional monotone
...

...
...

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner
(ANR-FWF International Cooperation Project PAGCAP - Beyond
Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and
Probability).



Merci!
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