On the solutions of universal differential equations by noncommutative Picard-Vessiot theory ${ }^{1}$

V.C. Bui ${ }^{1}$, V. Hoang Ngoc Minh ${ }^{2,3}$, Q.H. Ngô ${ }^{4}$, V. Nguyen Dinh ${ }^{3}$.

${ }^{1}$ Hue University of Sciences, 77 - Nguyen Hue street - Hue city, Vietnam.
${ }^{2}$ Université Lille, 1 Place Déliot, 59024 Lille, France.
${ }^{3}$ LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{4}$ University of Hai Phong, 171, Phan Dang Luu, Kien An, Hai Phong, Viet Nam.

Journées annuelles du GT CombAlg, 3-4 Juillet, 2023, Paris.

Outline

1. Introducing example
1.1 Knizhnik-Zamolodchikov differential equations
1.2 $K Z_{3}$: simplest non-trivial case ${ }^{2}$
1.3 Solution of $K Z_{3}$ using noncommutative generating series of polylogarithms
2. Algebraic combinatorial frameworks
2.1 PBW-CQMM theorems and bases in $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}, \Delta_{\text {conc }}\right)$
2.2 From Lazard's elimination to Loday's generalized bialgebras
2.3 Factorizations of grouplike series in bialgebras
3. Universal differential equation and universal connection
3.1 Flatness and complete integrability
3.2 Normalized Chen series and Volterra expansion like
3.3 Solution of $K Z_{n}(n \geq 4)$ satisfying asymptotic conditions
[^0]INTRODUCING EXAMPLE

Knizhnik-Zamolodchikov differential equations

$\left(\mathcal{H}(\mathcal{V}), 1_{\mathcal{H}(\mathcal{V})}\right)$: ring of holomorphic functions over $\mathcal{V}=\widetilde{\mathbb{C}_{*}^{n}}$, the universal covering of $\mathbb{C}_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$.
$\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$: ring of series over $\mathcal{T}_{n}:=\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ with coefficients in $\mathcal{H}(\mathcal{V})$ and is equipped the disc. topo., i.e. for any $S, T \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$,

$$
d(S, T)=2^{\varpi(S-T)}, \quad \text { where } \varpi(S)=\left\{\begin{aligned}
& \begin{array}{ll}
+\infty & \text { if } \\
\inf _{w \in \operatorname{supp}(S)}|w| & \text { if } \\
& S \neq 0
\end{array}
\end{aligned}\right.
$$

Example $\left(\mathcal{T}_{2}=\left\{t_{1,2}\right\}, K Z_{2}\right.$: trivial case)

Knizhnik-Zamolodchikov differential equations

$\left(\mathcal{H}(\mathcal{V}), 1_{\mathcal{H}(\mathcal{V})}\right)$: ring of holomorphic functions over $\mathcal{V}=\widetilde{\mathbb{C}_{*}^{n}}$, the universal covering of $\mathbb{C}_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$.
$\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$: ring of series over $\mathcal{T}_{n}:=\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ with coefficients in $\mathcal{H}(\mathcal{V})$ and is equipped the disc. topo., i.e. for any $S, T \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$,
$d(S, T)=2^{\varpi(S-T)}$, where $\varpi(S)=\left\{\begin{array}{lll}\inf _{w \in \operatorname{supp}(S)}|w| & \text { if } S=0, \\ \mid w \neq 0 .\end{array}\right.$
$\left(K Z_{n}\right) \quad \mathbf{d} F=\Omega_{n} F, \quad$ where $\quad \Omega_{n}(z):=\sum_{1 \leq i<j \leq n} \frac{t_{i, j}}{2 i \pi} d \log \left(z_{j}-z_{i}\right)$.
Example ($\mathcal{T}_{2}=\left\{t_{1,2}\right\}, K Z_{2}$: trivial case)
With $\Omega_{2}(z)=\left(t_{1,2} / 2 i \pi\right) d \log \left(z_{1}-z_{2}\right), \mathbf{d} F=\Omega_{2} F$ admits, in $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{2}}\right)\left\langle\left\langle\mathcal{T}_{2}\right\rangle\right\rangle$, $F\left(z_{1}, z_{2}\right)=e^{t_{1,2} / 2 i \pi \log \left(z_{1}-z_{2}\right)}=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi}$ as solution.
For $n>2$, solutions of $\left(K Z_{n}\right)$ can be computed by iterations of pointwise
convergence, for the disc. topo. o
Example (Picard's iteration)

Knizhnik-Zamolodchikov differential equations

$\left(\mathcal{H}(\mathcal{V}), 1_{\mathcal{H}(\mathcal{V})}\right)$: ring of holomorphic functions over $\mathcal{V}=\widetilde{\mathbb{C}_{*}^{n}}$, the universal covering of $\mathbb{C}_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$.
$\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$: ring of series over $\mathcal{T}_{n}:=\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ with coefficients in $\mathcal{H}(\mathcal{V})$ and is equipped the disc. topo., i.e. for any $S, T \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$,

$\left(K Z_{n}\right) \quad \mathbf{d} F=\Omega_{n} F, \quad$ where $\quad \Omega_{n}(z):=\sum_{1 \leq i<j \leq n} \frac{t_{i, j}}{2 i \pi} d \log \left(z_{j}-z_{i}\right)$.
Example ($\mathcal{T}_{2}=\left\{t_{1,2}\right\}, K Z_{2}$: trivial case)
With $\Omega_{2}(z)=\left(t_{1,2} / 2 \mathrm{i} \pi\right) d \log \left(z_{1}-z_{2}\right), \mathbf{d} F=\Omega_{2} F$ admits, in $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{2}}\right)\left\langle\left\langle\mathcal{T}_{2}\right\rangle\right\rangle$, $F\left(z_{1}, z_{2}\right)=e^{t_{1,2} / 2 i \pi \log \left(z_{1}-z_{2}\right)}=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi}$ as solution.
For $n>2$, solutions of $\left(K Z_{n}\right)$ can be computed by iterations of pointwise convergence, for the disc. topo. over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$.
Example (Picard's iteration)

$$
F_{0}\left(z_{0}, z\right)=1_{\mathcal{H}(\mathcal{V})} \quad \text { and } \quad F_{l}\left(z_{0}, z\right)=F_{I-1}\left(z_{0}, z\right)+\int_{z_{0}}^{z} \Omega_{n}(s) F_{I-1}\left(z_{0}, s\right) .
$$

Integrability and dévissage

According to Drinfel'd, $\left(K Z_{n}\right)$ is completely integrable if Ω_{n} is flat, i.e.

$$
\mathbf{d} \Omega_{n}-\Omega_{n} \wedge \Omega_{n}=0
$$

It turns out that this condition induces the following quadratic relations among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ (Kohno's lemma) :
$\mathcal{R}_{n}=\left\{\begin{array}{rll}{\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\ {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\ {\left[t_{i, j}, t_{k, l}\right]=0} & \text { for distinct } i, j, k, l & \text { and } \begin{cases}1 \leq i<j \leq n, \\ 1 \leq k<l \leq n,\end{cases} \end{array}\right.$
generating the Lie ideal of relators, $\mathcal{J}_{\mathcal{R}_{n}}$. Solutions of $K Z_{n}$ can be then iteratively computed over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and then over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle / / \mathcal{J}_{\mathcal{R}_{n}}\right.$.

For $z_{n} \rightarrow z_{n-1}$

Integrability and dévissage

According to Drinfel'd, $\left(K Z_{n}\right)$ is completely integrable if Ω_{n} is flat, i.e.

$$
\mathbf{d} \Omega_{n}-\Omega_{n} \wedge \Omega_{n}=0
$$

It turns out that this condition induces the following quadratic relations among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ (Kohno's lemma) :

$$
\mathcal{R}_{n}=\left\{\begin{array}{rll}
{\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\
{\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\
{\left[t_{i, j}, t_{k, l}\right]=0} & \text { for distinct } i, j, k, l & \text { and } \begin{cases}1 \leq i<j \leq n, \\
1 \leq k<l \leq n,\end{cases}
\end{array}\right.
$$

generating the Lie ideal of relators, $\mathcal{J}_{\mathcal{R}_{n}}$. Solutions of $K Z_{n}$ can be then iteratively computed over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and then over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle / / \mathcal{J}_{\mathcal{R}_{n}}\right.$.

For $z_{n} \rightarrow z_{n-1}$

$$
\Omega_{n}(z)=\underbrace{\sum_{1 \leq i<j \leq n-1} \frac{t_{i, j}}{2 \mathrm{i} \pi} \frac{d\left(z_{j}-z_{i}\right)}{z_{j}-z_{i}}}_{\Omega_{n-1}(z) \longleftrightarrow \mathcal{T}_{n-1}}+\underbrace{\sum_{j=1}^{n-2} \frac{t_{i, n}}{2 \mathrm{i} \pi} \frac{d\left(z_{n}-z_{j}\right)}{z_{n}-z_{j}}+\frac{t_{n-1, n}}{2 \mathrm{i} \pi} \frac{d\left(z_{n}-z_{n-1}\right)}{z_{n}-z_{n-1}}}_{\text {c.f. Lappo-Danilevsky's hyperlogarithms }}
$$

$K Z_{3}$: simplest non-trivial case, $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$

$$
\Omega_{3}=(2 \mathrm{i} \pi)^{-1}\left[t_{1,2} d \log \left(z_{1}-z_{2}\right)+t_{1,3} d \log \left(z_{1}-z_{3}\right)+t_{2,3} d \log \left(z_{2}-z_{3}\right)\right]
$$

$$
\mathbf{d} F=\Omega_{3} F \text { can be computed by the sequence }\left\{V_{1}\right\}_{I \geq 0}\left(\text { on } \mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle\right)
$$ defined by $V_{0}(z)=e^{t_{1,2} / 2 \mathrm{i} \pi \log \left(z_{1}-z_{2}\right)}$ and recursively

$$
V_{l}(z)=V_{0}(z) \int_{0}^{z} e^{-t_{1,2} / 2 \mathrm{i} \pi \log \left(s_{1}-s_{2}\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s)
$$

where $\tilde{\Omega}_{2}(z)=(2 \mathrm{i} \pi)^{-1}\left[t_{1,3} d \log \left(z_{1}-z_{3}\right)+t_{2,3} d \log \left(z_{2}-z_{3}\right)\right]$.

$\sum_{z=0} V_{1}$ $G(z)$

 $=V_{0} G$, where
$K Z_{3}$: simplest non-trivial case, $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$

$$
\Omega_{3}=(2 \mathrm{i} \pi)^{-1}\left[t_{1,2} d \log \left(z_{1}-z_{2}\right)+t_{1,3} d \log \left(z_{1}-z_{3}\right)+t_{2,3} d \log \left(z_{2}-z_{3}\right)\right] .
$$ $\mathbf{d} F=\Omega_{3} F$ can be computed by the sequence $\left\{V_{l}\right\}_{l \geq 0}$ (on $\left.\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle\right)$ defined by $V_{0}(z)=e^{t_{1,2} / 2 i \pi \log \left(z_{1}-z_{2}\right)}$ and recursively

$$
V_{l}(z)=V_{0}(z) \int_{0}^{z} e^{-t_{1,2} / 2 i \pi \log \left(s_{1}-s_{2}\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s)
$$

where $\tilde{\Omega}_{2}(z)=(2 i \pi)^{-1}\left[t_{1,3} d \log \left(z_{1}-z_{3}\right)+t_{2,3} d \log \left(z_{2}-z_{3}\right)\right]$.

$$
\begin{aligned}
\sum_{l \geq 0} V_{l} & =V_{0} G, \text { where } \\
G(z) & =\sum_{l \geq 0} \sum_{i_{1}, \ldots, i_{i} \in\{0,2\}} \int_{0}^{z} \omega_{i_{1}, 3}\left(s_{1}\right) \varphi^{\left(0, s_{1}\right)}\left(t_{i_{1}, 3}\right) \ldots \int_{0}^{s_{l-1}} \omega_{i l, 3}\left(s_{l}\right) \varphi^{\left(0, s_{l}\right)}\left(t_{i, 3}\right) \\
& =\sum_{l \geq 0} \sum_{i_{1}, \ldots, i_{l} \in\{0,2\}} \int_{0}^{z} \omega_{i_{1}, 3}\left(s_{1}\right) \ldots \int_{0}^{s_{l-1}} \omega_{i l, 3}\left(s_{l}\right) \underbrace{\varphi^{\left(0, s_{1}\right)}\left(t_{i_{1}, 3}\right) \ldots \varphi^{\left(0, s_{l}\right)}\left(t_{i, 3}\right)}_{=\varphi^{(0,2)}\left(t_{i_{1}, 3} \ldots t_{i, 3}\right)}
\end{aligned}
$$

and φ is the chronological conc-morphism of $\mathbb{C}\left\langle\mathcal{T}_{3}\right\rangle$ defined, for a subdivision $\left(0, s_{1}, \ldots, s_{k}, z\right)$ of $0 \rightsquigarrow z$, by $\varphi^{(0, z)}\left(t_{i, 3}\right)=e^{\text {ad }} t_{1,2} / 2 \mathrm{i} \pi \log \left(z_{1}-z_{2}\right) t_{i, 3}(i=1$ or 2$)$ and $\varphi^{(0, z)}\left(t_{i_{1}, 3} \ldots t_{i, 3}\right)=\varphi^{\left(0, s_{1}\right)}\left(t_{i_{1}, 3}\right) \ldots \varphi^{\left(0, s_{1}\right)}\left(t_{i, 3}\right)$.

Noncommutative generating series of polylogarithms

$$
\mathbf{d} G=\left(\varphi\left(t_{1,3}\right) \omega_{1,3}+\varphi\left(t_{2,3}\right) \omega_{2,3}\right) G, \quad\left\{\begin{array}{l}
\omega_{1,3}(z)=(2 \mathrm{i} \pi)^{-1} d \log \left(z_{1}-z_{3}\right) \\
\omega_{2,3}(z)=(2 \mathrm{i} \pi)^{-1} d \log \left(z_{2}-z_{3}\right)
\end{array}\right.
$$

$$
\ln \left(P_{1,2}\right): z_{1}-z_{2}=1, \varphi \equiv \text { Id and then, putting }\left(z_{1}, z_{2}, z_{3}\right)=(1,0, s)
$$

$$
\mathbf{d} G=\left(x_{1} \omega_{1}+x_{0} \omega_{0}\right) G, \quad \begin{cases}x_{0}=t_{1,3} / 2 \mathrm{i} \pi, & \omega_{0}(s)=d \log (s) \\ x_{1}=-t_{2,3} / 2 \mathrm{i} \pi, & \omega_{1}(s)=-d \log (1-s)\end{cases}
$$

This can be solved by Picard's iteration :

$$
C_{s_{0} \rightsquigarrow s}:=\sum_{w \in X^{*}} \alpha_{s_{0}}^{s}(w) w, \text { where } \alpha_{s_{0}}^{s}(w)=\left\{\begin{aligned}
& 1_{\mathcal{H}(B)} \text { if } \\
& w^{s}=1_{X^{*}} \\
& \int_{s_{0}}^{s} \omega_{i}(t) \alpha_{s_{0}}^{t}(u) \text { if } \\
& w=x_{i} u
\end{aligned}\right.
$$

where $\left(X^{*}, 1_{X^{*}}\right)$ is the free monoid generated by $X:=\left\{x_{0}, x_{1}\right\}$ and $\left(\mathcal{H}(B), 1_{\mathcal{H}(B)}\right)$ is the ring of holomorphic functions over $B:=\mathbb{C} \backslash\{0,1\}$. Let $\left\{P_{l}\right\}_{I \in \mathcal{L} y n X}$ be the basis of $\mathcal{L i e}_{\mathcal{H}(B)}\langle X\rangle$, in duality with the pure transcendence basis $\left\{S_{I}\right\}_{I \in \mathcal{L} y n X}$ of $(\mathcal{H}(B)\langle X\rangle$, w $)$.

Noncommutative generating series of polylogarithms

$$
\mathbf{d} G=\left(\varphi\left(t_{1,3}\right) \omega_{1,3}+\varphi\left(t_{2,3}\right) \omega_{2,3}\right) G, \quad\left\{\begin{array}{l}
\omega_{1,3}(z)=(2 \mathrm{i} \pi)^{-1} d \log \left(z_{1}-z_{3}\right) \\
\omega_{2,3}(z)=(2 \mathrm{i} \pi)^{-1} d \log \left(z_{2}-z_{3}\right)
\end{array}\right.
$$

$$
\ln \left(P_{1,2}\right): z_{1}-z_{2}=1, \varphi \equiv \operatorname{Id} \text { and then, putting }\left(z_{1}, z_{2}, z_{3}\right)=(1,0, s)
$$

$$
\mathbf{d} G=\left(x_{1} \omega_{1}+x_{0} \omega_{0}\right) G, \quad \begin{cases}x_{0}=t_{1,3} / 2 \mathrm{i} \pi, & \omega_{0}(s)=d \log (s) \\ x_{1}=-t_{2,3} / 2 \mathrm{i} \pi, & \omega_{1}(s)=-d \log (1-s)\end{cases}
$$

This can be solved by Picard's iteration :

$$
C_{s_{0} \rightsquigarrow s}:=\sum_{w \in X^{*}} \alpha_{s_{0}}^{s}(w) w, \text { where } \alpha_{s_{0}}^{s}(w)=\left\{\begin{aligned}
& 1_{\mathcal{H}(B)} \text { if } \\
& w^{s}=1_{X^{*}} \\
& \int_{s_{0}}^{s} \omega_{i}(t) \alpha_{s_{0}}^{t}(u) \text { if } \\
& w=x_{i} u
\end{aligned}\right.
$$

where $\left(X^{*}, 1_{X^{*}}\right)$ is the free monoid generated by $X:=\left\{x_{0}, x_{1}\right\}$ and $\left(\mathcal{H}(B), 1_{\mathcal{H}(B)}\right)$ is the ring of holomorphic functions over $B:=\mathbb{C} \backslash\{0,1\}$. Let $\left\{P_{1}\right\}_{\mid \in \mathcal{L}_{y n} X}$ be the basis of $\mathcal{L i e}_{\mathcal{H}(B)}\langle X\rangle$, in duality with the pure transcendence basis $\left\{S_{l}\right\}_{l \in \mathcal{L} y n X}$ of $(\mathcal{H}(B)\langle X\rangle$, ш).

Let Li_{\bullet} be the $ш$-character defined, over the algebraic basis $\mathcal{L} y n X$, by

$$
\operatorname{Li}_{1_{x^{*}}}=1_{\mathcal{H}(B)}, \quad \operatorname{Li}_{x_{0}}(s)=\log (s), \quad \operatorname{Li}_{x_{1}}(s)=-\log (1-s) \quad \text { and }
$$

$$
\operatorname{Li}_{x_{i} w}(s)=\int_{0}^{s} \omega_{i}(\sigma) \operatorname{Li}_{w}(\sigma), \quad \text { for } \quad x_{i} w \in \mathcal{L} y n X \backslash X \subset x_{0} X^{*} x_{1} .
$$

$\left\{\mathrm{Li}_{\mid}\right\}_{\mid \in \mathcal{L} y n X}\left(\right.$ resp. $\left.\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}\right)$ are $\mathcal{H}(B)$-algebraically (resp. linearly) free.

Solution of $K Z_{3}$ using n.g.s. of polylogarithms

$$
\mathrm{L}:=\sum_{w \in X^{*}} \mathrm{Li}_{w} w=\prod_{l \in \mathscr{C y n X}} e^{\mathrm{Li}_{\mathrm{s}_{l}} P_{1}} \text { and } \Phi_{K Z}:=\prod_{l \in \mathcal{C} y n \backslash \backslash X} e^{\mathrm{Li} \mathrm{~s}_{l}(1) P_{1}} \text {. }
$$

L satisfies also $\mathbf{d} G=\left(x_{1} \omega_{1}+x_{0} \omega_{0}\right) G$ and then $\mathrm{L}(s)=C_{s_{0} w s} \mathrm{~L}^{-1}\left(s_{0}\right)$.
For $s_{0} \rightarrow 0, \mathrm{~L}(s)$ normalizes $C_{s_{0} \rightsquigarrow s, s}$ and $\mathrm{L}\left(s_{0}\right)$ is a counter term. $\lim _{s \rightarrow 0} L(s) e^{-x_{0} \log s}=1$ and $\lim _{z \rightarrow 1} e^{x_{1} \log (1-s)} L(s)=\Phi_{K Z}$, $\Longleftrightarrow \mathrm{L}(s) \sim_{0} e^{x_{0} \log s}$ and $\mathrm{L}(s) \sim_{1} e^{-x_{1} \log (1-s)} \Phi_{K Z}$.

\square

Solution of $K Z_{3}$ using n.g.s. of polylogarithms

$$
\mathrm{L}:=\sum_{w \in X^{*}} \mathrm{Li}_{w} w=\prod_{l \in \mathscr{L y n X}} e^{\mathrm{Li} s_{l} P_{l}} \text { and } \Phi_{K Z}:=\prod_{l \in \mathcal{C y n X \backslash X}} e^{\mathrm{Li} s_{l}(1) P_{1}} \text {. }
$$

L satisfies also $\mathbf{d} G=\left(x_{1} \omega_{1}+x_{0} \omega_{0}\right) G$ and then $\mathrm{L}(s)=C_{s_{0} \rightsquigarrow{ }_{s}} \mathrm{~L}^{-1}\left(s_{0}\right)$.
For $s_{0} \rightarrow 0, \mathrm{~L}(s)$ normalizes $C_{s_{0} \rightsquigarrow s, s}$ and $\mathrm{L}\left(s_{0}\right)$ is a counter term.

$$
\begin{aligned}
& \lim _{s \rightarrow 0} L(s) e^{-x_{0} \log s}=1 \quad \text { and } \quad \lim _{z \rightarrow 1} e^{x_{1} \log (1-s)} \mathrm{L}(s)=\Phi_{K Z}, \\
& \Longleftrightarrow \mathrm{~L}(s) \sim_{0} e^{x_{0} \log s} \quad \text { and } \quad \mathrm{L}(s) \sim_{1} e^{-x_{1} \log (1-s)} \Phi_{K Z} .
\end{aligned}
$$

Let $g: s \longmapsto \frac{s-z_{2}}{z_{1}-z_{2}}$ be the homo. transf. mapping $\left\{z_{2}, z_{1}\right\}$ to $\{0,1\}$.
Then $\mathrm{L}(g(s))=\mathrm{L}\left(\frac{s-z_{2}}{z_{1}-z_{2}}\right)$ is a particular solution of $\left(K Z_{3}\right)$ in $\left(P_{1,2}\right)$.
So does ${ }^{3} \mathrm{~L}\left(\frac{s-z_{2}}{z_{1}-z_{2}}\right)\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 \mathrm{i} \pi}$.
Since $[$
commutes with t and then with $\mathcal{H}\left(\mathbb{C}_{*}^{3}\right)\left\langle\left\langle T_{3}\right\rangle\right\rangle$. Thus, $\left(K Z_{3}\right)$ also admits
3. $\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{2,3}+t_{1,3}\right) / 2 i \pi}=e^{\left(\left(t_{1,2}+t_{2,3}+t_{1,3}\right) / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}$, being independent on $z_{3}=s$ and then belonging to the differential Galois group of $K Z_{3}$.

Solution of $K Z_{3}$ using n.g.s. of polylogarithms

$$
\mathrm{L}:=\sum_{w \in X^{*}} \operatorname{Li}_{w} w=\prod_{I \in \mathcal{L} y n X}^{\searrow} e^{\mathrm{Li}_{s_{l}} P_{l}} \quad \text { and } \quad \Phi_{K Z}:=\prod_{I \in \mathcal{L} y n X \backslash X}^{\searrow} e^{\mathrm{Li}_{s_{l}}(1) P_{l}} .
$$

L satisfies also $\mathbf{d} G=\left(x_{1} \omega_{1}+x_{0} \omega_{0}\right) G$ and then $\mathrm{L}(s)=C_{s_{0} \rightsquigarrow s} \mathrm{~L}^{-1}\left(s_{0}\right)$.
For $s_{0} \rightarrow 0, \mathrm{~L}(s)$ normalizes $C_{s_{0} \rightsquigarrow s}$ and $\mathrm{L}\left(s_{0}\right)$ is a counter term.

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \mathrm{~L}(s) e^{-x_{0} \log s}=1 \quad \text { and } \quad \lim _{z \rightarrow 1} e^{x_{1} \log (1-s)} \mathrm{L}(s)=\Phi_{K Z}, \\
& \Longleftrightarrow \mathrm{~L}(s) \sim_{0} e^{x_{0} \log s} \quad \text { and } \quad \mathrm{L}(s) \sim_{1} e^{-x_{1} \log (1-s)} \Phi_{K Z} .
\end{aligned}
$$

Let $g: s \longmapsto \frac{s-z_{2}}{z_{1}-z_{2}}$ be the homo. transf. mapping $\left\{z_{2}, z_{1}\right\}$ to $\{0,1\}$.
Then $\mathrm{L}(g(s))=\mathrm{L}\left(\frac{s-z_{2}}{z_{1}-z_{2}}\right)$ is a particular solution of $\left(K Z_{3}\right)$ in $\left(P_{1,2}\right)$.
So does ${ }^{3} \mathrm{~L}\left(\frac{s-z_{2}}{z_{1}-z_{2}}\right)\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 \mathrm{i} \pi}$.
Since $\left[t_{1,2}+t_{2,3}+t_{1,3}, t\right]=0$, for $t \in \mathcal{T}_{3}$, then $\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{2,3}+t_{1,3}\right) / 2 \mathrm{i} \pi}$ commutes with t and then with $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$. Thus, $\left(K Z_{3}\right)$ also admits $\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 \mathrm{i} \pi} \mathrm{L}\left(\frac{S-z_{2}}{z_{1}-z_{2}}\right)$ as a particular solution in $\left(P_{1,2}\right)$.
3. $\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{2,3}+t_{1,3}\right) / 2 i \pi}=e^{\left(\left(t_{1,2}+t_{2,3}+t_{1,3}\right) / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}$, being independent on $z_{3}=s$ and then belonging to the differential Galois group of $K Z_{3}$.

ALGEBRAIC COMBINATORIAL FRAMWORKS

Some notations on free Lie algebra and on shuffle algebra

\mathcal{T}_{n} generates the free monoid $\left(\mathcal{T}_{n}^{*}, 1_{\mathcal{T}_{n}^{*}}\right)$ in which conc (resp. $\Delta_{\text {conc }}$) denotes the concatenation product (resp. co-product). $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$ (resp. $\mathcal{L i e _ { \mathcal { A } }}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\left.\mathcal{L} \mathcal{e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ are the (resp. Lie) algebras of series and of polynomials over \mathcal{T}_{n} with coefficients in the integral ring \mathcal{A}.

Let r be the right normed bracketing defined by $r\left(1_{\tau_{n^{*}}}\right)=0$ and

Let the product \amalg be defined, for any $x, y \in \mathcal{T}_{n}$ and $u, v \in \mathcal{T}_{n}^{*}$, by $u ш 1_{\mathcal{T}_{n}^{*}}=1_{\mathcal{T}_{n}^{* *}} \amalg u=u$ and $x u ш y v=x(u ш y v)+y(v \varpi x u)$, or equivalently, \triangle

Some notations on free Lie algebra and on shuffle algebra

\mathcal{T}_{n} generates the free monoid $\left(\mathcal{T}_{n}^{*}, 1_{\mathcal{T}_{n}^{*}}\right)$ in which conc (resp. $\Delta_{\text {conc }}$) denotes the concatenation product (resp. co-product).
$\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$ (resp. $\mathcal{L i e _ { \mathcal { A } }}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\left.\mathcal{L} \mathcal{e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ are the (resp. Lie) algebras of series and of polynomials over \mathcal{T}_{n} with coefficients in the integral ring \mathcal{A}.

Let r be the right normed bracketing defined by $r\left(1_{\mathcal{T}_{n}^{*}}\right)=0$ and $r\left(t_{1} \ldots t_{k}\right)=\left[t_{1},\left[\ldots,\left[t_{k-1}, t_{k}\right] \ldots\right]=\operatorname{ad}_{t_{1}} \ldots \operatorname{ad}_{t_{k-1}} t_{k}\right.$.
Let the product $ш$ be defined, for any $x, y \in \mathcal{T}_{n}$ and $u, v \in \mathcal{T}_{n}^{*}$, by $u \amalg 1_{\mathcal{T}_{n}^{*}}=1_{\mathcal{T}_{n}^{*} \amalg u} u=u$ and $x u ш y v=x(u ш y v)+y(v ш x u)$, or equivalently, $\Delta_{\Perp} x=x \otimes 1_{\mathcal{T}_{n}^{*}}+1_{\mathcal{T}_{n}^{*}} \otimes x$.

Hence, for any S and $R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ $a(S)=\sum_{w \in T_{n}}\langle S \mid w\rangle a(w)$ and $\left\{\begin{aligned} a(S R) & =a(R) a(S), \\ a(S w R) & =a(S) w a(R) .\end{aligned}\right.$

Some notations on free Lie algebra and on shuffle algebra

\mathcal{T}_{n} generates the free monoid $\left(\mathcal{T}_{n}^{*}, \mathcal{T}_{\mathcal{T}_{n}^{*}}\right)$ in which conc (resp. $\Delta_{\text {conc }}$) denotes the concatenation product (resp. co-product).
$\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$ (resp. $\mathcal{L i e} \mathcal{A}_{\mathcal{A}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and $\left.\mathcal{L} \mathcal{e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ are the (resp. Lie) algebras of series and of polynomials over \mathcal{T}_{n} with coefficients in the integral ring \mathcal{A}.

Let r be the right normed bracketing defined by $r\left(1_{\mathcal{T}_{n}^{*}}\right)=0$ and $r\left(t_{1} \ldots t_{k}\right)=\left[t_{1},\left[\ldots,\left[t_{k-1}, t_{k}\right] \ldots\right]=\operatorname{ad}_{t_{1}} \ldots \operatorname{ad}_{t_{k-1}} t_{k}\right.$.
Let the product $ш$ be defined, for any $x, y \in \mathcal{T}_{n}$ and $u, v \in \mathcal{T}_{n}^{*}$, by $u \amalg 1_{\mathcal{T}_{n}^{*}}=1_{\mathcal{T}_{n}^{*} \amalg u} u=u$ and $x u \amalg y v=x(u \amalg y v)+y(v ш x u)$, or equivalently, $\Delta_{\Perp} x=x \otimes 1_{\mathcal{T}_{n}^{*}}+1_{\mathcal{T}_{n}^{*}} \otimes x$.
Let $|v|_{t}$ be the number of occurrences of t in $v=t_{1} \ldots t_{m} \in \mathcal{T}_{n}^{*}$ and

$$
\tilde{v}=t_{m} \ldots t_{1}, \quad a(v)=(-1)^{|M|} \tilde{v}, \quad \hat{v}=\underset{t \in \mathcal{T}_{n}}{t^{\mid \eta_{t}}} .
$$

Hence, for any S and $R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$,

$$
a(S)=\sum_{w \in \mathcal{T}_{n}^{*}}\langle S \mid w\rangle a(w) \quad \text { and } \quad\left\{\begin{aligned}
a(S R) & =a(R) a(S), \\
a(S \amalg R) & =a(S) ш a(R) .
\end{aligned}\right.
$$

If $\left\langle S \mid 1_{\mathcal{T}_{n}^{*}}\right\rangle=1$ then $a(S)$ is its inverse for conc, i.e.

$$
S a(S)=a(S) S=1_{\mathcal{T}_{n}^{*}} \text { and then } a\left(e^{L}\right)=e^{-L}, \text { for } L \in \mathcal{L i}_{\mathcal{A}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle .
$$

PBW-CQMM theorems and bases in $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}, \Delta_{\text {conc }}\right)$

Let $\left\{b_{i}\right\}_{i \in I}$ be a basis of $\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$. Let ${ }^{4}\left\{b^{\alpha}\right\}_{\alpha \in \mathbb{N}^{(1)}}$ be the associated PBW basis of the enveloping algebra $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$.

By CQMM theorem, the dual basis $\left\{\check{b}^{\alpha}\right\}_{\alpha \in \mathbb{N}^{(I)}}$ of the associative commutative algebra $\mathcal{U}\left(\operatorname{Lie}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)^{\vee}$ is constructed as follows ${ }^{5}$

$$
\begin{aligned}
& \check{b}^{\alpha} \check{b}^{\beta}=\frac{(\alpha+\beta)!}{\alpha!\beta!} \check{b}^{\alpha+\beta} \quad \text { and } \quad \check{b}_{\alpha\left(i_{1}\right) m_{i_{1}}+\cdots+\alpha\left(i_{k}\right) m_{i_{k}}}=\frac{\check{b}_{m_{1}}^{\alpha\left(i_{1}\right)}}{\alpha\left(i_{1}\right)!} \cdots \frac{\check{b}_{m_{i_{k}}}^{\alpha\left(i_{k}\right)}}{\alpha\left(i_{k}\right)!} \\
& \left\langle b^{\beta} \mid \check{b}^{\alpha}\right\rangle=\delta_{\alpha, \beta} \quad \text { and, on } \operatorname{End}\left(\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)\right), \quad \operatorname{Id}_{\mathcal{U}\left(\mathcal{L} i_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)}=\prod_{i \in I} e^{b^{i_{i}} \otimes b^{b_{i}}} .
\end{aligned}
$$

4. using the elementary multiindex, $m_{i} \in \mathbb{N}^{(1)}$, defined by $m_{i}(j)=\delta_{i, j}$ (for $i, j \in I$) and, the multiindex notation, i.e.

$$
\forall \alpha \in \mathbb{N}^{(l)}, \quad \operatorname{supp}(\alpha) \subset\left\{i_{1}, \cdots, i_{n}\right\}, \quad b^{\alpha}=b_{i_{1}}^{\alpha\left(i_{1}\right)} \cdots b_{i_{n}}^{\alpha\left(i_{n}\right)} .
$$

5. $\forall \alpha \in \mathbb{N}^{(I)}, \alpha!=\prod_{i \in I} \alpha_{i}!$.

PBW-CQMM theorems and bases in $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}, \Delta_{\text {conc }}\right)$

Let $\left\{b_{i}\right\}_{i \in I}$ be a basis of $\mathcal{L i e} e_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$. Let ${ }^{4}\left\{b^{\alpha}\right\}_{\alpha \in \mathbb{N}^{(I)}}$ be the associated PBW basis of the enveloping algebra $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$.

By CQMM theorem, the dual basis $\left\{\check{b}^{\alpha}\right\}_{\alpha \in \mathbb{N}^{(l)}}$ of the associative commutative algebra $\mathcal{U}\left(\operatorname{Lie}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)^{\vee}$ is constructed as follows ${ }^{5}$

$$
\begin{aligned}
& \check{b}^{\alpha} \breve{b}^{\beta}=\frac{(\alpha+\beta)!}{\alpha!\beta!} \check{b}^{\alpha+\beta} \quad \text { and } \quad \check{b}_{\alpha\left(i_{1}\right) m_{i_{1}}+\cdots+\alpha\left(i_{k}\right) m_{i_{k}}}=\frac{\check{b}_{m_{1}}^{\alpha\left(i_{1}\right)}}{\alpha\left(i_{1}\right)!} \cdots \frac{\check{b}_{m_{i k}}^{\alpha\left(i i_{k}\right)}}{\alpha\left(i_{k}\right)!} . \\
& \left\langle b^{\beta} \mid \check{b}^{\alpha}\right\rangle=\delta_{\alpha, \beta} \quad \text { and, on } \operatorname{End}\left(\mathcal{U}\left(\mathcal{L i}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)\right), \quad \operatorname{Id}_{\mathcal{U}\left(\mathcal{L} e_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)}=\prod_{i \in I} e^{b^{e_{i}} \otimes b^{e_{i}}} .
\end{aligned}
$$

If $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ is endowed with the PBW basis $\left\{P_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$, containing the basis $\left\{P_{l}\right\}_{\mid \in \mathcal{L} y n} \mathcal{T}_{n}$ of $\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$, and $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)^{\vee}$ with $\left\{S_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$, containing the transcendence basis $\left\{S_{l}\right\}_{l \in \mathcal{L} y n} \mathcal{T}_{n}$ of $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right)$ then

$$
\mathcal{D}_{\mathcal{T}_{n}}:=\sum_{w \in \mathcal{T}_{n}^{*}} w \otimes w=\sum_{w \in \mathcal{T}_{n}^{*}} S_{w} \otimes P_{w}=\prod_{\mathcal{C} y n \mathcal{T}_{n}} e^{S_{l} \otimes P_{1}}
$$

4. using the elementary multiindex, $m_{i} \in \mathbb{N}^{(l)}$, defined by $m_{i}(j)=\delta_{i, j}$ (for $i, j \in I$) and, the multiindex notation, i.e.

$$
\forall \alpha \in \mathbb{N}^{(I)}, \quad \operatorname{supp}(\alpha) \subset\left\{i_{1}, \cdots, i_{n}\right\}, \quad b^{\alpha}=b_{i_{1}}^{\alpha\left(i_{1}\right)} \cdots b_{i_{n}}^{\alpha\left(i_{n}\right)}
$$

5. $\forall \alpha \in \mathbb{N}^{(I)}, \alpha!=\prod_{i \in I} \alpha_{i}!$.

From partitioning of \mathcal{T}_{n} to Lazard's elimination ...
Let $T_{n}:=\left\{t_{j, n}\right\}_{1 \leq j \leq n-1}$ s.t. $\mathcal{T}_{n}=T_{n} \sqcup \mathcal{T}_{n-1}$.
Example
$\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$, one has $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$ and \mathcal{T}_{3}.
$\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$, one has $T_{3}=\left\{t_{1,3}, t_{2,3}\right\}$ and $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$.
Let \mathcal{I}_{n} be the Lie subalgebra generated by $\{r(v t)\} v \in T_{n}^{*}$. Then

From partitioning of \mathcal{T}_{n} to Lazard's elimination ...
Let $T_{n}:=\left\{t_{j, n}\right\}_{1 \leq j \leq n-1}$ s.t. $\mathcal{T}_{n}=T_{n} \sqcup \mathcal{T}_{n-1}$.
Example
$\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$, one has $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$ and \mathcal{T}_{3}.
$\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$, one has $T_{3}=\left\{t_{1,3}, t_{2,3}\right\}$ and $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$.
Let \mathcal{I}_{n} be the Lie subalgebra generated by $\{r(v t)\}_{\substack{v \in \mathcal{T}_{n}^{*} \\ t \in T_{n-1}}}$. Then

$$
\mathcal{L i} e_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle=\mathcal{L i} e_{\mathcal{A}}\left\langle T_{n}\right\rangle \oplus \mathcal{I}_{n} .
$$

As Lie algebra, \mathcal{I}_{n} is obviously a Leibniz algebra ${ }^{6}$ and then \mathcal{I}_{n}^{\vee} is generated by $\{a(v t)\} \quad v \in T_{n}^{*}$, being a Zinbiel subalgebra of $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, \underset{\sim}{w}\right)$, where the half-shuffle product is defined by $\left(t \in \mathcal{T}_{n}, R, H \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)$ $1_{\mathcal{T}_{n}^{*}}(t H)=0 \quad$ and $\quad(t H) 山 R=\left\{\begin{array}{lll}t H & \text { if } R=1 \mathcal{T}_{n}^{*} \\ t(H R) & \text { if } R \neq 1 \mathcal{T}_{n}\end{array}\right.$
\square
\square

From partitioning of \mathcal{T}_{n} to Lazard's elimination ...

Let $T_{n}:=\left\{t_{j, n}\right\}_{1 \leq j \leq n-1}$ s.t. $\mathcal{T}_{n}=T_{n} \sqcup \mathcal{T}_{n-1}$.
Example
$\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$, one has $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$ and \mathcal{T}_{3}.
$\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$, one has $T_{3}=\left\{t_{1,3}, t_{2,3}\right\}$ and $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$.
Let \mathcal{I}_{n} be the Lie subalgebra generated by $\{r(v t)\}_{\substack{v \in T_{n}^{*} \\ t \in \tau_{n-1}}}^{\substack{\text {. Then }}}$

$$
\mathcal{L i} e_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle=\mathcal{L i} e_{\mathcal{A}}\left\langle T_{n}\right\rangle \oplus \mathcal{I}_{n} .
$$

As Lie algebra, \mathcal{I}_{n} is obviously a Leibniz algebra ${ }^{6}$ and then \mathcal{I}_{n}^{\vee} is generated by $\{a(v t)\} \substack{v \in \mathcal{T}_{n-1}^{*} \\ t \in \mathcal{T}_{n-1}}$, being a Zinbiel subalgebra of $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, \frac{w}{2}\right)$, where the half-shuffle product is defined by $\left(t \in \mathcal{T}_{n}, R, H \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)$

$$
1_{\mathcal{T}_{n}^{*} \frac{\amalg}{2}}(t H)=0 \quad \text { and } \quad(t H)_{\frac{\omega}{2}} R=\left\{\begin{array}{cll}
t H & \text { if } R=1_{\mathcal{T}_{*}^{*}}, \\
t(H \amalg R) & \text { if } R \neq 1_{\mathcal{T}_{n}^{*}} .
\end{array}\right.
$$

Example $\left(\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}\right)$

$$
\begin{aligned}
& \left(t_{1,3} t_{1,2}\right) \stackrel{\omega}{2} t_{2,3}=t_{1,3}\left(t_{1,2} ш t_{2,3}\right)=t_{1,3} t_{1,2} t_{2,3}+t_{1,3} t_{2,3} t_{1,2}, \\
& \left(t_{1,3} t_{1,2}^{*}\right) \stackrel{\omega}{2} t_{2,3}=t_{1,3}\left(t_{1,2}^{*} ш t_{2,3}\right)=t_{1,3} t_{1,2}^{*} t_{2,3} t_{1,2}^{*} .^{7}
\end{aligned}
$$

6. i.e. $\forall x, y, z \in \mathcal{I}_{n}$, the identity $[x,[y, z]]=[[x, y], z]-[[x, z], y]$ holds.
7. $\forall S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad\left\langle S \mid 1_{\mathcal{T}_{n}^{*}}\right\rangle=0, \quad S^{*}=1_{\mathcal{T}_{n}^{*}}+S+S^{2}+\ldots$.

. . . and to Loday's generalized bialgebras

Half-shuffle is not associative but satisfies the following identities

$$
\forall P, Q, R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad\left(P_{\frac{\Perp}{2}} Q\right)_{\frac{\amalg}{2}} R=P_{\underset{2}{2}}\left(Q_{\frac{山}{2}} R\right)+P_{\frac{山}{2}}\left(R_{\underset{2}{2}} Q\right) .
$$

More generally, for any $u_{i} \in \mathcal{T}_{n}^{+}$and $l_{i} \in \mathcal{L} \operatorname{LyT}_{n}, 1$

and to Loday＇s generalized bialgebras
Half－shuffle is not associative but satisfies the following identities

$$
\forall P, Q, R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad\left(P_{\frac{山}{2}} Q\right)_{\frac{山}{2}} R=P_{\frac{\Perp}{2}}\left(Q_{\frac{山}{2}} R\right)+P_{\frac{\Perp}{2}}\left(R_{\frac{山}{2}} Q\right) .
$$

More generally，for any $u_{i} \in \mathcal{T}_{n}^{+}$and $I_{i} \in \mathcal{L} y n \mathcal{T}_{n}, 1 \leq i \leq k \in \mathbb{N}_{\geq 1}$ ，

Example（ $t_{1}, t_{2} \in \mathcal{T}_{n}$ and $\left.w_{1}, w_{2} \in \mathcal{T}_{n}^{\prime}\right)$
$t_{1} w_{1} \omega t_{2} w_{2}=t_{1}\left(w_{1} w t_{2} w_{2}\right)+t_{2}\left(w_{2} ш t_{1} w_{1}\right)=t_{1} w_{1} w t_{2} w_{2}+t_{2} w_{2} ш t_{1} w_{1}$.
... and to Loday's generalized bialgebras
Half-shuffle is not associative but satisfies the following identities

$$
\forall P, Q, R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad\left(P_{\frac{\underset{2}{2}}{}} Q\right)_{\frac{\underset{2}{2}}{}} R=P_{\frac{\underset{2}{2}}{}}\left(Q_{\frac{山}{2}} R\right)+P_{\frac{\underset{2}{2}}{}}\left(R_{\frac{\underset{2}{2}}{}} Q\right) .
$$

More generally, for any $u_{i} \in \mathcal{T}_{n}^{+}$and $I_{i} \in \mathcal{L} y n \mathcal{T}_{n}, 1 \leq i \leq k \in \mathbb{N}_{\geq 1}$,
$ш$ is a symmetrized product of $\frac{\underset{2}{2}}{}$, i.e. $\left(x, y \in \mathcal{T}_{n}, u, v \in \mathcal{T}_{n}, P, Q \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)$

$$
(x u)_{\amalg}(y v)=(x u)_{\frac{\Perp}{2}}(y v)+(y v)_{\frac{\underset{2}{2}}{}}(x u) \quad \text { and then } \quad P \uplus Q=P_{\frac{\Perp}{2}} Q+Q_{\frac{\Perp}{2}} P .
$$

Example $\left(t_{1}, t_{2} \in \mathcal{T}_{n}\right.$ and $\left.w_{1}, w_{2} \in \mathcal{T}_{n}^{+}\right)$

$$
t_{1} w_{1} ш t_{2} w_{2}=t_{1}\left(w_{1} ш t_{2} w_{2}\right)+t_{2}\left(w_{2} ш t_{1} w_{1}\right)=t_{1} w_{1} \underset{2}{2} t_{2} w_{2}+t_{2} w_{2} \underset{2}{2} t_{1} w_{1} .
$$

Let also Δ_{w} be defined, for any $t \in \mathcal{T}_{n}$ and $w \in \mathcal{T}_{n}^{*}$, by

and to Loday＇s generalized bialgebras

Half－shuffle is not associative but satisfies the following identities

$$
\forall P, Q, R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad\left(P_{\frac{\underset{2}{2}}{}} Q\right)_{\frac{\amalg}{2}} R=P_{\frac{\amalg}{2}}\left(Q_{\overline{2}} R\right)+P_{\underset{2}{2}}\left(R_{\underset{2}{2}} Q\right) .
$$

More generally，for any $u_{i} \in \mathcal{T}_{n}^{+}$and $I_{i} \in \mathcal{L} y n \mathcal{T}_{n}, 1 \leq i \leq k \in \mathbb{N}_{\geq 1}$ ，
$ш$ is a symmetrized product of $\underset{\frac{\rightharpoonup}{2}}{ }$ ，i．e．$\left(x, y \in \mathcal{T}_{n}, u, v \in \mathcal{T}_{n}, P, Q \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)$

Example $\left(t_{1}, t_{2} \in \mathcal{T}_{n}\right.$ and $\left.w_{1}, w_{2} \in \mathcal{T}_{n}^{+}\right)$ $t_{1} w_{1} ш t_{2} w_{2}=t_{1}\left(w_{1} ш t_{2} w_{2}\right)+t_{2}\left(w_{2} ш t_{1} w_{1}\right)=t_{1} w_{1} \underset{2}{2} t_{2} w_{2}+t_{2} w_{2} \frac{山}{2} t_{1} w_{1}$.
Let also $\Delta_{\frac{山}{2}}$ be defined，for any $t \in \mathcal{T}_{n}$ and $w \in \mathcal{T}_{n}^{*}$ ，by

$$
\Delta_{\frac{山}{2}} 1_{\mathcal{T}_{n}^{*}}=1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}, \quad \Delta_{\frac{\Perp}{2}} t=t \otimes 1_{\mathcal{T}_{n}^{*}}, \quad \Delta_{\frac{\Perp}{2}}(t w)=\Delta_{\frac{\Perp}{2}}(t) \Delta_{\amalg}(w),
$$

and then，for $P, Q \in \mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, \Delta_{\frac{山}{2}} P=\left\langle P \mid 1_{\mathcal{T}_{n}^{*}}\right\rangle 1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}+\sum_{v \in \mathcal{T}_{n}^{+}}\langle P \mid v\rangle \Delta_{\frac{山}{2}} v$ ，

$$
\begin{aligned}
& \Delta_{\text {conc }}\left(P_{\frac{山}{2}} Q\right)=\Delta_{\text {conc }} P_{\frac{山}{2}} \otimes_{\frac{山}{2}} \Delta_{\text {conc }} Q, \quad \Delta_{\frac{山}{2}}(P Q)=\Delta_{\frac{山}{2}} P \Delta_{\amalg} Q . \\
& Z_{\frac{\amalg}{2}}\left(\mathcal{T}_{n}\right):=\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, \frac{\stackrel{\omega}{2}}{}, \Delta_{\text {conc }}\right) \quad \text { and } \quad Z_{\text {conc }}\left(\mathcal{T}_{n}\right):=\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, \text { conc }, \Delta_{\frac{山}{2}}\right) .
\end{aligned}
$$

Other dual bases in bialgebras

For any $v_{1}, v_{2} \in T_{n}^{*}$ and $t_{1}, t_{2} \in \mathcal{T}_{n-1},\left\langle a\left(v_{1} t_{1}\right) \mid r\left(v_{2} t_{2}\right)\right\rangle=\delta_{v_{1} t_{1}}^{v_{2} t_{2}}$. Hence, $\mathcal{I}_{n} \simeq\left(\operatorname{span}_{\mathcal{A}}\{r(v t)\}_{\substack{v \in \mathcal{T}_{n-1}^{*} \\ t \in \mathcal{T}_{n-1}}},[],\right)$ and then, by duality,

$$
\left.\mathcal{I}_{n}^{\vee} \simeq\left(\operatorname{span}_{\mathcal{A}}\{-t u\}_{\substack{u \in T_{t}^{*} \\ t \in T_{n-1}}}, \amalg\right) \simeq\left(\operatorname{span}_{\mathcal{A}}\{a(v t)\}\right\}_{\substack{v \in T_{n-1}^{*} \\ t \in T_{n}}}, \frac{w}{2}\right) .
$$

For any $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p} \in T_{n}^{*}$ and $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p} \in \mathcal{T}_{n-1}$, $\left\langle a\left(u_{1} x_{1}\right) \frac{\underset{2}{2}}{\frac{\omega}{2}}\left(\cdots \underset{\frac{m}{2}}{m} a\left(u_{p} x_{p}\right) \ldots\right)\right)\left|r\left(v_{1} y_{1}\right) \ldots r\left(v_{p} y_{p}\right)\right\rangle=\delta_{u_{1} x_{1} \ldots v_{p} x_{p}}^{v_{1} y_{1}, v_{p} v_{p}}$. Hence, $\mathcal{U}\left(\mathcal{I}_{n}\right) \simeq \operatorname{span}_{\mathcal{A}}\left\{(-1)^{\left|v_{1} \ldots v_{k}\right|} r\left(v_{1} t_{1}\right) \cdots r\left(v_{p} t_{p}\right)\right\}_{\substack{v_{1}, \ldots, v_{p} \in \tau_{n}^{* *} \\ t_{1}, \ldots, t_{p} \in T_{n-1}}}^{p \geq 1,}$

$$
\mathcal{U}\left(\mathcal{I}_{n}\right)^{\vee} \simeq \operatorname{span}_{\mathcal{A}}\left\{a\left(u_{1} t_{1}\right) ш \cdots ш a\left(u_{p} t_{p}\right)\right\}_{\substack{u_{1}, \ldots, u_{p} \in T_{1}^{*} \\ t_{1}, \ldots, t_{p} \in \mathcal{T}_{n-1}}}^{p 1}
$$

$$
\left.\simeq \operatorname{span}_{\mathcal{A}}\left\{a\left(v_{1} t_{1}\right)_{\frac{\omega}{2}}\left(\cdots \underset{\frac{w}{2}}{\underset{\sim}{2}} a\left(v_{p} t_{p}\right) \ldots\right)\right)\right\}_{\substack{p \geq 1 \\ v_{1}, \ldots, v_{p} \in T_{n}^{*} \in T_{n-1}^{*}}}^{\substack{n-1}}
$$

Proposition

$\mathcal{U}\left(\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ and $\mathcal{U}\left(\mathcal{L i}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)^{\vee}$ admit $T_{n}^{*} \mathcal{B}$ and $T_{n}^{*} ш \mathcal{B}^{\vee}$ as dual bases.

$$
\begin{aligned}
& \mathcal{B}:=\left\{\operatorname{ad}_{-T_{n}}^{k_{1}} t_{1} \ldots \operatorname{ad}_{-T_{n}}^{k_{p}} t_{p}\right\}_{t_{1}, \ldots, t_{p} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{p} \geq 0, p \geq 1} \\
& =\left\{(-1)^{\left.\right|_{1} \ldots v_{k} \mid} r\left(v_{1} t_{1}\right) \cdots r\left(v_{p} t_{p}\right)\right\}^{p>1}{ }_{v_{1}}, \\
& \mathcal{B}^{\vee}:=\left\{\left(-t_{1} T_{n}^{k_{1}}\right) w \cdots w\left(-t_{p} T_{n}^{k_{p}}\right)\right\}_{t_{1}, \ldots, t_{p} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{p} \geq 0, p \geq 1} \\
& =\left\{a\left(u_{1} t_{1}\right) ш \cdots ш a\left(u_{p} t_{p}\right)\right\}_{u_{1}, \ldots, u_{p} \in T_{n}^{*}}^{p \geq 1}
\end{aligned}
$$

Factorizations of grouplike series in bialgebras

If $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle \ni S$ is grouplike then, as image of $\mathcal{D}_{\mathcal{T}_{n}}$ by $S \otimes \mathrm{Id}$,

$$
\begin{aligned}
& S=\sum_{w \in \mathcal{T}_{n}^{*}}\langle S \mid w\rangle w=\sum_{w \in \mathcal{T}_{n}^{*}}\left\langle S \mid S_{w}\right\rangle P_{w}=\prod_{\mathcal{L} y n \mathcal{T}_{n}}^{l} e^{\left\langle S \mid S_{l}\right\rangle \otimes P_{l}} . \\
& S^{-1}=a(S)=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n}}^{\swarrow} a\left(e^{\left\langle S \mid S_{l}\right\rangle P_{l}}\right)=\prod_{l \in \mathcal{L} y n \tau_{n}}^{\swarrow} e^{-\left\langle S \mid S_{l}\right\rangle P_{l}} .
\end{aligned}
$$

Theorem
The diagonal series can be factorized as follows ${ }^{8}$

Ordering by
it can be also factorized as follows

Factorizations of grouplike series in bialgebras

If $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle \ni S$ is grouplike then, as image of $\mathcal{D}_{\mathcal{T}_{n}}$ by $S \otimes \mathrm{Id}$,

$$
\begin{aligned}
& S=\sum_{w \in \mathcal{T}_{n}^{*}}\langle S \mid w\rangle w=\sum_{w \in \mathcal{T}_{n}^{*}}\left\langle S \mid S_{w}\right\rangle P_{w}=\prod_{\mathcal{L} y n \tau_{n}}^{v} e^{\left\langle S \mid S_{l}\right\rangle \otimes P_{1}} . \\
& S^{-1}=a(S)=\prod_{l \in \mathcal{L} y n \tau_{n}}^{\swarrow} a\left(e^{\left\langle S \mid S_{l}\right\rangle P_{l}}\right)=\prod_{l \in \mathcal{L} y n \tau_{n}}^{\swarrow} e^{-\left\langle S \mid S_{l}\right\rangle P_{l}} .
\end{aligned}
$$

Theorem

The diagonal series can be factorized as follows ${ }^{8}$

$$
\begin{aligned}
\mathcal{D}_{\mathcal{T}_{n}}= & \mathcal{D}_{T_{n}}\left(1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{\substack{v_{1}, \ldots, v_{k} \in \mathcal{T}_{*}^{*} \\
t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}}\right. \\
& \left.\left.a\left(v_{1} t_{1}\right) \frac{\omega}{2}\left(\cdots \underset{\frac{\omega}{2}}{ }\left(v_{k} t_{k}\right) \ldots\right)\right) \otimes r\left(v_{1} t_{1}\right) \ldots r\left(v_{k} t_{k}\right)\right) .
\end{aligned}
$$

Ordering by $t_{1, k} \succ \ldots \succ t_{k-1, k}, \quad T_{2} \succ \ldots \succ T_{n}, \quad \mathcal{L} y n T_{2} \succ \ldots \succ \mathcal{L} y n T_{n}$, it can be also factorized as follows

$$
\mathcal{D}_{\mathcal{T}_{n}}=\prod_{l \in \mathcal{L}_{y n} \mathcal{T}_{n}} e^{S_{l} \otimes P_{l}}=\mathcal{D}_{\mathcal{T}_{n-1}}\left(\prod_{\substack{l=11_{2} \\ 2 \in \mathcal{L} y n T_{n-1},_{1} \in \mathcal{L} y T_{n}}} e^{S_{l} \otimes P_{l}}\right) \mathcal{D}_{T_{n}}
$$

[^1]
Factorizations of grouplike series in bialgebras

If $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle \ni S$ is grouplike then, as image of $\mathcal{D}_{\mathcal{T}_{n}}$ by $S \otimes \mathrm{Id}$,

$$
\begin{aligned}
& S=\sum_{w \in \mathcal{T}_{n}^{*}}\langle S \mid w\rangle w=\sum_{w \in \mathcal{T}_{n}^{*}}\left\langle S \mid S_{w}\right\rangle P_{w}=\prod_{\mathcal{L} y n \tau_{n}}^{v} e^{\left\langle S \mid S_{l}\right\rangle \otimes P_{1}} . \\
& S^{-1}=a(S)=\prod_{l \in \mathcal{L} y n \tau_{n}}^{\swarrow} a\left(e^{\left\langle S \mid S_{l}\right\rangle P_{l}}\right)=\prod_{l \in \mathcal{L} y n \tau_{n}}^{\swarrow} e^{-\left\langle S \mid S_{l}\right\rangle P_{l}} .
\end{aligned}
$$

Theorem

The diagonal series can be factorized as follows ${ }^{8}$

$$
\begin{aligned}
\mathcal{D}_{\mathcal{T}_{n}}= & \mathcal{D}_{T_{n}}\left(1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{\substack{v_{1}, \ldots, v_{k} \in \mathcal{T}_{*}^{*} \\
t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}}\right. \\
& \left.\left.a\left(v_{1} t_{1}\right) \frac{\omega}{2}\left(\cdots \underset{\frac{\omega}{2}}{ }\left(v_{k} t_{k}\right) \ldots\right)\right) \otimes r\left(v_{1} t_{1}\right) \ldots r\left(v_{k} t_{k}\right)\right) .
\end{aligned}
$$

Ordering by $t_{1, k} \succ \ldots \succ t_{k-1, k}, \quad T_{2} \succ \ldots \succ T_{n}, \quad \mathcal{L} y n T_{2} \succ \ldots \succ \mathcal{L} y n T_{n}$, it can be also factorized as follows

$$
\mathcal{D}_{\mathcal{T}_{n}}=\prod_{l \in \mathcal{L}_{y n} \mathcal{T}_{n}} e^{S_{l} \otimes P_{l}}=\mathcal{D}_{\mathcal{T}_{n-1}}\left(\prod_{\substack{l=11_{2} \\ 2 \in \mathcal{L} y n T_{n-1},_{1} \in \mathcal{L} y T_{n}}} e^{S_{l} \otimes P_{l}}\right) \mathcal{D}_{T_{n}}
$$

[^2]
UNIVERSAL DIFFERENTIAL EQUATION AND UNIVERSAL CONNECTION

Universal differential equation

\mathcal{V} : the simply connected manifold on \mathbb{C}^{n}. The pushforward (resp. pullback) of any diffeomorphism g on \mathcal{V} is denoted by g_{*} (resp. g^{*}). $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$: the differential ring $\left(\operatorname{Const}(\mathcal{A})=\mathbb{C} .1_{\mathcal{H}(\mathcal{V})}\right)$ of holomorphic functions (with $1_{\mathcal{H}(\mathcal{V})}$ as the neutral element) on \mathcal{V}. Let \mathcal{C} be a sub differential ring of \mathcal{A} (i.e. $\partial_{i} \mathcal{C} \subset \mathcal{C}, 1 \leq i \leq n$).

Universal differential equation

\mathcal{V} : the simply connected manifold on \mathbb{C}^{n}. The pushforward (resp. pullback) of any diffeomorphism g on \mathcal{V} is denoted by g_{*} (resp. g^{*}). $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$: the differential ring $\left(\operatorname{Const}(\mathcal{A})=\mathbb{C} .1_{\mathcal{H}(\mathcal{V})}\right)$ of holomorphic functions (with $1_{\mathcal{H}(\mathcal{V})}$ as the neutral element) on \mathcal{V}. Let \mathcal{C} be a sub differential ring of \mathcal{A} (i.e. $\left.\partial_{i} \mathcal{C} \subset \mathcal{C}, 1 \leq i \leq n\right)$.

For any $f \in \mathcal{A}$, one has $d f=\left(\partial_{1} f\right) d z_{1}+\ldots+\left(\partial_{n} f\right) d z_{n}$. Then ${ }^{9}$

$$
\forall S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad \partial_{i} S=\sum_{w \in \mathcal{T}_{n}^{*}}\left(\partial_{i}\langle S \mid w\rangle\right) w, \quad \mathbf{d} S=\sum_{1 \leq i \leq n}\left(\partial_{i} S\right) d z_{i} .
$$

$\ln \left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right.$,
$(N C D E)$,$\left.\partial_{n}\right)(\mathrm{C}$
$=M_{n} S$, where $\omega_{i, j}=d \xi_{i, j}$ is a holomorphic 1-form ${ }^{10}$ belonging to $\Omega^{1}(\mathcal{V})$.
9. Recall that $\{\langle S \mid w\rangle\}_{w \in \mathcal{T}_{n}^{*}}$ commute with $\{w\}_{w \in \mathcal{T}_{n}^{*}}$.

Universal differential equation

\mathcal{V} : the simply connected manifold on \mathbb{C}^{n}. The pushforward (resp. pullback) of any diffeomorphism g on \mathcal{V} is denoted by g_{*} (resp. g^{*}). $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$: the differential ring $\left(\operatorname{Const}(\mathcal{A})=\mathbb{C} .1_{\mathcal{H}(\mathcal{V})}\right)$ of holomorphic functions (with $1_{\mathcal{H}(\mathcal{V})}$ as the neutral element) on \mathcal{V}. Let \mathcal{C} be a sub differential ring of \mathcal{A} (i.e. $\left.\partial_{i} \mathcal{C} \subset \mathcal{C}, 1 \leq i \leq n\right)$.

For any $f \in \mathcal{A}$, one has $d f=\left(\partial_{1} f\right) d z_{1}+\ldots+\left(\partial_{n} f\right) d z_{n}$. Then ${ }^{9}$

$$
\forall S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \quad \partial_{i} S=\sum_{w \in \mathcal{T}_{n}^{*}}\left(\partial_{i}\langle S \mid w\rangle\right) w, \quad \mathbf{d} S=\sum_{1 \leq i \leq n}\left(\partial_{i} S\right) d z_{i} .
$$

In $\left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \partial_{1}, \ldots, \partial_{n}\right)\left(\operatorname{Const}\left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)=\mathbb{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)$, let us consider
$(N C D E) \quad \mathbf{d} S=M_{n} S$, where $M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j} \in \Omega^{1}(\mathcal{V})\left\langle\mathcal{T}_{n}\right\rangle$,
where $\omega_{i, j}=\boldsymbol{d} \xi_{i, j}$ is a holomorphic 1 -form ${ }^{10}$ belonging to $\Omega^{1}(\mathcal{V})$.
Example $\left(\xi_{i, j}(z)=\log \left(z_{i}-z_{j}\right), 1 \leq i<j \leq n\right)$
Let $\mathcal{C}_{0}:=\mathbb{C}\left[\left\{\left(\partial_{1} \xi_{i, j}\right)^{ \pm 1}, \ldots,\left(\partial_{n} \xi_{i, j}\right)^{ \pm 1}\right\}_{1 \leq i<j \leq n}\right]$. Then $\partial_{k} \mathcal{C}_{0} \subset \mathcal{C}_{0}, 1 \leq k \leq n$.
9. Recall that $\{\langle S \mid w\rangle\}_{w \in \mathcal{T}_{n}^{*}}$ commute with $\{w\}_{w \in \mathcal{T}_{n}^{*}}$.
10. $\mathcal{C} \ni \xi_{i, j}$ is a primitive for $\omega_{i, j}$. It is exact and then is a closed, i.e. $d \omega_{i, j}=0$.

Universal connection

$$
\overbrace{\left\{x_{k}\right\}_{1 \leq j \leq n(n-1) / 2}}^{\longleftrightarrow \mathcal{T}_{n}} \text { s.t. }\left\{\begin{array}{l}
M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}=\sum_{k=1}^{n(n-1) / 2} F_{k} x_{k}=\sum_{l=1}^{n} A_{l} d z_{l}, \\
F_{k}=\sum_{l=1}^{n} f_{l, k} d z_{l} \quad \text { and then } \quad A_{l}=\sum_{k=1}^{n(n-1) / 2} f_{l, k} x_{k}
\end{array}\right.
$$

Universal connection

$$
\overbrace{\left\{x_{k}\right\}_{1 \leq j \leq n(n-1) / 2}}^{\longleftrightarrow \mathcal{T}_{n}} \text { s.t. }\left\{\begin{array}{l}
M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}=\sum_{k=1}^{n(n-1) / 2} F_{k} x_{k}=\sum_{l=1}^{n} A_{l} d z_{l}, \\
F_{k}=\sum_{l=1}^{n} f_{l, k} d z_{l} \quad \text { and then } \quad A_{l}=\sum_{k=1}^{n(n-1) / 2} f_{l, k} x_{k} .
\end{array}\right.
$$

If $0 \neq S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and S satisfies $N C D E$ then

$$
\mathbf{d} S=M_{n} S=\sum_{l=1}^{n}\left(\partial_{l} S\right) d z_{l}, \quad \text { with } \quad \partial_{l} S=A_{l} S
$$

Moreover, $\partial_{i} \partial_{j} S=\partial_{j} \partial_{i} S$ and then $\partial_{j} \partial_{i} S=\left(\left(\partial_{j} A_{i}\right)+A_{i} A_{j}\right) S, 1 \leq i, j \leq n$.
It follows that Or equivalently ${ }^{11}$,
\qquad

Universal connection

$$
\overbrace{\left\{x_{k}\right\}_{1 \leq j \leq n(n-1) / 2}}^{\longleftrightarrow \mathcal{T}_{n}} \text { s.t. }\left\{\begin{array}{l}
M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}=\sum_{k=1}^{n(n-1) / 2} F_{k} x_{k}=\sum_{l=1}^{n} A_{l} d z_{l}, \\
F_{k}=\sum_{l=1}^{n} f_{l, k} d z_{l} \quad \text { and then } \quad A_{l}=\sum_{k=1}^{n(n-1) / 2} f_{l, k} x_{k}
\end{array}\right.
$$

If $0 \neq S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and S satisfies $N C D E$ then

$$
\mathbf{d} S=M_{n} S=\sum_{l=1}^{n}\left(\partial_{l} S\right) d z_{l}, \quad \text { with } \quad \partial_{l} S=A_{l} S
$$

Moreover, $\partial_{i} \partial_{j} S=\partial_{j} \partial_{i} S$ and then $\partial_{j} \partial_{i} S=\left(\left(\partial_{j} A_{i}\right)+A_{i} A_{j}\right) S, 1 \leq i, j \leq n$.
It follows that $\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]=0, \quad$ for $\quad 1 \leq i, j \leq n$.
Or equivalently ${ }^{11}, \mathbf{d} M_{n}-M_{n} \wedge M_{n}=0$.
This induces an ideal, \mathcal{J}_{n}, of relators among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ and then solution can be computed over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and then over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle /\right.$
11. M_{n} is said to be flat and $N C D E$ is said to be completely integrable.

Universal connection

$$
\overbrace{\left\{x_{k}\right\}_{1 \leq j \leq n(n-1) / 2}}^{\longleftrightarrow \mathcal{T}_{n}} \text { s.t. }\left\{\begin{array}{l}
M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}=\sum_{k=1}^{n(n-1) / 2} F_{k} x_{k}=\sum_{l=1}^{n} A_{l} d z_{l}, \\
F_{k}=\sum_{l=1}^{n} f_{l, k} d z_{l} \quad \text { and then } \quad A_{l}=\sum_{k=1}^{n(n-1) / 2} f_{l, k} x_{k} .
\end{array}\right.
$$

If $0 \neq S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and S satisfies $N C D E$ then

$$
\mathbf{d} S=M_{n} S=\sum_{l=1}^{n}\left(\partial_{l} S\right) d z, \quad \text { with } \quad \partial_{l} S=A_{l} S
$$

Moreover, $\partial_{i} \partial_{j} S=\partial_{j} \partial_{i} S$ and then $\partial_{j} \partial_{i} S=\left(\left(\partial_{j} A_{i}\right)+A_{i} A_{j}\right) S, 1 \leq i, j \leq n$.
It follows that $\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]=0, \quad$ for $\quad 1 \leq i, j \leq n$. Or equivalently ${ }^{11}, \mathrm{~d} M_{n}-M_{n} \wedge M_{n}=0$.

This induces an ideal, \mathcal{J}_{n}, of relators among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ and then solution can be computed over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and then over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{n}$.
11. M_{n} is said to be flat and NCDE is said to be completely integrable.

Universal connection

$$
\overbrace{\left\{x_{k}\right\}_{1 \leq j \leq n(n-1) / 2}}^{\longleftrightarrow \mathcal{T}_{n}} \text { s.t. }\left\{\begin{array}{l}
M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}=\sum_{k=1}^{n(n-1) / 2} F_{k} x_{k}=\sum_{l=1}^{n} A_{l} d z_{l}, \\
F_{k}=\sum_{l=1}^{n} f_{l, k} d z_{l} \quad \text { and then } \quad A_{l}=\sum_{k=1}^{n(n-1) / 2} f_{l, k} x_{k} .
\end{array}\right.
$$

If $0 \neq S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and S satisfies $N C D E$ then

$$
\mathbf{d} S=M_{n} S=\sum_{l=1}^{n}\left(\partial_{l} S\right) d z_{l}, \quad \text { with } \quad \partial_{l} S=A_{l} S
$$

Moreover, $\partial_{i} \partial_{j} S=\partial_{j} \partial_{i} S$ and then $\partial_{j} \partial_{i} S=\left(\left(\partial_{j} A_{i}\right)+A_{i} A_{j}\right) S, 1 \leq i, j \leq n$.
It follows that $\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]=0, \quad$ for $\quad 1 \leq i, j \leq n$. Or equivalently ${ }^{11}, \mathrm{~d} M_{n}-M_{n} \wedge M_{n}=0$.

This induces an ideal, \mathcal{J}_{n}, of relators among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ and then solution can be computed over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ and then over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{n}$.

$$
\mathcal{T}_{n}=T_{n} \sqcup \mathcal{T}_{n-1} \longleftrightarrow M_{n}=\bar{M}_{n}+M_{n-1} \text {, where } \bar{M}_{n}=\sum_{k=1}^{n-1} \omega_{k, n} t_{k, n}
$$

11. M_{n} is said to be flat and $N C D E$ is said to be completely integrable.

Iterated integrals and Chen series

Let $\varsigma \rightsquigarrow z$ denotes a path over \mathcal{V} (with fixed endpoints, (ς, z)):
$\gamma:[0,1] \longrightarrow \mathcal{V}$ s.t. $\gamma(0)=\varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{n}\right)$ and $\gamma(1)=z=\left(z_{1}, \ldots, z_{n}\right)$.
The iterated integrals, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, are defined by

$$
\alpha_{\varsigma}^{z}\left(1_{\mathcal{T}_{n}^{*}}\right)=1_{\mathcal{H}(\mathcal{V})}, \quad \forall t_{i, j} u \in \mathcal{T}_{n}^{*}, \quad \alpha_{\varsigma}^{z}\left(t_{i, j} u\right)=\int_{\varsigma}^{z} \omega_{i, j}(s) \alpha_{\varsigma}^{s}(v) .
$$

The Chen series, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, is defined by
which can be obtained by Picard's iteration ${ }^{12}$

Iterated integrals and Chen series

Let $\varsigma \rightsquigarrow z$ denotes a path over \mathcal{V} (with fixed endpoints, (ς, z)):
$\gamma:[0,1] \longrightarrow \mathcal{V}$ s.t. $\gamma(0)=\varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{n}\right)$ and $\gamma(1)=z=\left(z_{1}, \ldots, z_{n}\right)$.
The iterated integrals, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, are defined by

$$
\alpha_{\varsigma}^{z}\left(1_{\mathcal{T}_{n}^{* *}}\right)=1_{\mathcal{H}(\mathcal{V})}, \quad \forall t_{i, j} u \in \mathcal{T}_{n}^{*}, \quad \alpha_{\varsigma}^{z}\left(t_{i, j} u\right)=\int_{\varsigma}^{z} \omega_{i, j}(s) \alpha_{\varsigma}^{s}(v) .
$$

The Chen series, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, is defined by

$$
C_{\varsigma \rightsquigarrow z}:=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) w=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n}}^{\chi_{\varsigma}} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}}
$$

which can be obtained by Picard's iteration ${ }^{12}$:

$$
F_{0}=1_{\mathcal{T}_{n}^{*}}, \quad \forall i \geq 1, \quad F_{i}(\varsigma, z)=F_{i-1}(\varsigma, z)+\int_{\varsigma}^{z} M_{n} F_{i-1}(\varsigma, s) .
$$

and along s
12. which is convergent for the discrete topology.

Iterated integrals and Chen series

Let $\varsigma \rightsquigarrow z$ denotes a path over \mathcal{V} (with fixed endpoints, (ς, z)):
$\gamma:[0,1] \longrightarrow \mathcal{V}$ s.t. $\gamma(0)=\varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{n}\right)$ and $\gamma(1)=z=\left(z_{1}, \ldots, z_{n}\right)$.
The iterated integrals, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, are defined by

$$
\alpha_{\varsigma}^{z}\left(1_{\mathcal{T}_{n}^{*}}\right)=1_{\mathcal{H}(\mathcal{V})}, \quad \forall t_{i, j} u \in \mathcal{T}_{n}^{*}, \quad \alpha_{\varsigma}^{z}\left(t_{i, j} u\right)=\int_{\varsigma}^{z} \omega_{i, j}(s) \alpha_{\varsigma}^{s}(v) .
$$

The Chen series, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, is defined by

$$
C_{\varsigma \rightsquigarrow z}:=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) w=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n}}^{\chi_{\varsigma}} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}}
$$

which can be obtained by Picard's iteration ${ }^{12}$:

$$
F_{0}=1_{\mathcal{T}_{n}^{*}}, \quad \forall i \geq 1, \quad F_{i}(\varsigma, z)=F_{i-1}(\varsigma, z)+\int_{\varsigma}^{z} M_{n} F_{i-1}(\varsigma, s) .
$$

Let g be a diffeomorphism on \mathcal{V}. The Chen series, of $\left\{g^{*} \omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $\varsigma \rightsquigarrow z$, or equivalently, of $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along $g_{*} \varsigma \rightsquigarrow z$:

$$
C_{g_{*} \rightsquigarrow \rightsquigarrow z}=\sum_{m \geq 0} \sum_{t_{1}, j_{1} \ldots t_{i}, j_{m} \in \mathcal{T}_{n}^{*}} \int_{\varsigma}^{z} g^{*} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \ldots \int_{\varsigma}^{s_{m}} g^{*} \omega_{i_{m}, j_{m}}\left(s_{m}\right) t_{i_{1}, j_{1}} \ldots t_{i_{m}, j_{m}}
$$

which can be obtained by Picard's iteration with $F_{0}^{*}=1_{\mathcal{T}_{n}^{*}}$ and for $i \geq 1$,

$$
F_{i-1}^{*}(\varsigma, z)+\int_{\varsigma}^{z} M_{n}^{*} F_{i-1}^{*}(\varsigma, s), \text { where } M_{n}^{*}=\sum_{1 \leq i<j \leq n} g^{*} \omega_{i, j} t_{i, j} .
$$

12. which is convergent for the discrete topology.

Sequences of grouplike series for Chen series

Let $\left\{V_{k}\right\}_{k \geq 0}$ and $\left\{\hat{V}_{k}\right\}_{k \geq 0}$ satisfy to the following recursion

$$
\forall k \geq 1, \quad F_{k}(\varsigma, z)=F_{0}(\varsigma, z) \sum_{t_{i}, j \in \mathcal{T}_{n-1}} \int_{\varsigma}^{z} \omega_{i, j}(s) F_{0}^{-1}(\varsigma, s) t_{i, j} F_{k-1}(\varsigma, s),
$$

with the starting conditions, as being $ш$-grouplike series,

$$
\begin{aligned}
V_{0}(\varsigma, z)=\prod_{l \in \mathcal{L} y n T_{n}} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}} \quad \text { and } \quad \hat{V}_{0}=V_{0} \quad \bmod \left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \mathcal{L} \mathcal{L}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right] . \\
\sum_{k \geq 0} V_{k} \quad \text { and } \quad \sum_{k \geq 0} \hat{V}_{k} \quad\left\{\begin{array}{l}
\text { Do they converge? } \\
\text { What are their limit } ?
\end{array}\right.
\end{aligned}
$$

Sequences of grouplike series for Chen series

Let $\left\{V_{k}\right\}_{k \geq 0}$ and $\left\{\hat{V}_{k}\right\}_{k \geq 0}$ satisfy to the following recursion

$$
\forall k \geq 1, \quad F_{k}(\varsigma, z)=F_{0}(\varsigma, z) \sum_{t_{i, j} \in \mathcal{T}_{n-1}} \int_{\varsigma}^{z} \omega_{i, j}(s) F_{0}^{-1}(\varsigma, s) t_{i, j} F_{k-1}(\varsigma, s)
$$

with the starting conditions, as being $ш$-grouplike series,

$$
\begin{aligned}
& V_{0}(\varsigma, z)=\prod_{l \in \mathcal{L} y n T_{n}} e^{\alpha_{\varsigma}^{2}\left(S_{l}\right) P_{l}} \quad \text { and } \quad \hat{V}_{0}=V_{0} \quad \bmod \left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \mathcal{L i} e_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right] . \\
& \sum_{k \geq 0} V_{k} \quad \text { and } \quad \sum_{k \geq 0} \hat{V}_{k} \quad\left\{\begin{array}{c}
\text { Do they converge? } \\
\text { What are their limit ? }
\end{array}\right.
\end{aligned}
$$

Let $\varphi_{T_{n}}:=e^{\text {ad }-v_{0}}$ and $\hat{\varphi}_{T_{n}}:=e^{\text {ad }}-v_{0}$ be the conc-morphisms defined by

$$
\varphi_{T_{n}}^{(\varsigma, z)^{n}}(w)=\varphi_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}}\right) \cdots \varphi_{T_{n}}^{\left(\varsigma \varsigma s_{k}\right)}\left(t_{k_{k}}\right), \quad \hat{\varphi}_{T_{n}}^{(\varsigma, z)}(w)=\hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}}\right) \cdots \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}}\right),
$$

for $w=t_{i_{1}} \ldots t_{i_{k}} \in \mathcal{T}_{n-1}^{*}$ and subdivision ($\varsigma, s_{1}, \ldots, s_{k}, z$) of $\varsigma \rightsquigarrow z$.
Let also $\varphi_{n}(t)=\varphi_{T_{n}}(t) \bmod \mathcal{J}_{n}$ and $\hat{\varphi}_{n}(t)=\hat{\varphi}_{T_{n}}(t) \bmod \mathcal{J}_{n}\left(t \in \mathcal{T}_{n}\right)$.

Sequences of grouplike series for Chen series

Let $\left\{V_{k}\right\}_{k \geq 0}$ and $\left\{\hat{V}_{k}\right\}_{k \geq 0}$ satisfy to the following recursion

$$
\forall k \geq 1, \quad F_{k}(\varsigma, z)=F_{0}(\varsigma, z) \sum_{t_{i, j} \in \mathcal{T}_{n-1}} \int_{\varsigma}^{z} \omega_{i, j}(s) F_{0}^{-1}(\varsigma, s) t_{i, j} F_{k-1}(\varsigma, s),
$$

with the starting conditions, as being $ш$-grouplike series,

$$
\begin{aligned}
V_{0}(\varsigma, z)=\prod_{l \in \mathcal{L} y n T_{n}} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}} \quad \text { and } \quad \hat{V}_{0}=V_{0} \quad \bmod \left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \mathcal{L} e_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right] . \\
\sum_{k \geq 0} V_{k} \quad \text { and } \quad \sum_{k \geq 0} \hat{V}_{k} \quad\left\{\begin{array}{l}
\text { Do they converge? } \\
\text { What are their limit? }
\end{array}\right.
\end{aligned}
$$

Let $\varphi_{T_{n}}:=e^{\text {ad }-v_{0}}$ and $\hat{\varphi}_{T_{n}}:=e^{\text {ad }}-v_{0}$ be the conc-morphisms defined by

$$
\varphi_{T_{n}}^{(\varsigma, z)}(w)=\varphi_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}}\right) \cdots \varphi_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{k_{k}}\right), \quad \hat{\varphi}_{T_{n}}^{(\varsigma, z)}(w)=\hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}}\right) \cdots \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}}\right),
$$

for $w=t_{i_{1}} \ldots t_{i_{k}} \in \mathcal{T}_{n-1}^{*}$ and subdivision $\left(\varsigma, s_{1}, \ldots, s_{k}, z\right.$) of $\varsigma \rightsquigarrow z$.
Let also $\varphi_{n}(t)=\varphi_{T_{n}}(t) \bmod \mathcal{J}_{n}$ and $\hat{\varphi}_{n}(t)=\hat{\varphi}_{T_{n}}(t) \bmod \mathcal{J}_{n}\left(t \in \mathcal{T}_{n}\right)$.
Let $H(\varsigma, z):=\left(\alpha_{\varsigma}^{z} \otimes \mathrm{Id}\right) \lambda \mathcal{D}_{\mathcal{T}_{n-1}}$ and $\hat{H}(\varsigma, z):=\left(\alpha_{\varsigma}^{z} \otimes \mathrm{Id}\right) \hat{\lambda} \mathcal{D}_{\mathcal{T}_{n-1}}$, where

$$
\lambda, \hat{\lambda}:\left(\mathcal{A}\left\langle\mathcal{T}_{n-1}\right\rangle \hat{\otimes} \mathcal{A}\left\langle\mathcal{T}_{n-1}\right\rangle, \text { conc} \otimes_{\text {conc }}\right) \quad \longrightarrow\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle \hat{\otimes} \mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle,{ }_{\frac{w}{2}} \otimes_{\text {conc }}\right),
$$

defined on the letters by

$$
\lambda(t \otimes t)=\sum_{v \in T_{n}^{*}} a(v t) \otimes r(v t) \quad \text { and } \quad \hat{\lambda}(t \otimes t)=\sum_{v \in T_{n}^{*}} a(\hat{v} t) \otimes r(v t) .
$$

Volterra expansion like

$$
\begin{aligned}
H(\varsigma, z)= & 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right), \\
\hat{H}(\varsigma, z)= & 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right) .
\end{aligned}
$$

Theorem
For any $w \in \mathcal{T}_{n-1}$, there is $\kappa_{w}=V_{0} \varphi_{T_{n}}(w)$ and $\hat{h}_{w}=\hat{V}_{0} \hat{\rho}_{T_{n}}(w)$ s.t.

Volterra expansion like

$$
\begin{aligned}
& H(\varsigma, z)=1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k}-1} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right), \\
& \hat{H}(\varsigma, z)=1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right) \text {. }
\end{aligned}
$$

Theorem
For any $w \in \mathcal{T}_{n-1}^{*}$, there is $\kappa_{w}=V_{0} \varphi_{T_{n}}(w)$ and $\hat{\kappa}_{w}=\hat{V}_{0} \hat{\varphi}_{T_{n}}(w)$ s.t.

$$
\begin{gathered}
V_{k}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots, t_{k_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{k}-1} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \kappa_{w}(z, s), \\
\hat{V}_{k}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots, t_{k}, j_{k} \in \mathcal{T}_{n-1}^{*} \varsigma} \int_{\varsigma} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \hat{\kappa}_{w}(z, s) . \\
\sum_{k \geq 0} V_{k}=V_{0} H, \quad \sum_{k \geq 0} \hat{V}_{k}=\hat{V}_{0} \hat{H}, \quad C_{\varsigma \rightsquigarrow z}=V_{0}(\varsigma, z) H(\varsigma, z) .
\end{gathered}
$$

Using φ_{n} and $\hat{\varphi}_{n}$, i.e. reducing by \mathcal{J}_{n}, analogous results hold.

Volterra expansion like

$$
\begin{aligned}
H(\varsigma, z)= & 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \varphi_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right), \\
\hat{H}(\varsigma, z)= & 1_{\mathcal{T}_{n}^{*}}+\sum_{k \geq 1} \sum_{t_{i_{1}, j_{1}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \\
& \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{1}\right)}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \hat{\varphi}_{T_{n}}^{\left(\varsigma, s_{k}\right)}\left(t_{i_{k}, j_{k}}\right) .
\end{aligned}
$$

Theorem
For any $w \in \mathcal{T}_{n-1}^{*}$, there is $\kappa_{w}=V_{0} \varphi_{T_{n}}(w)$ and $\hat{\kappa}_{w}=\hat{V}_{0} \hat{\varphi}_{T_{n}}(w)$ s.t.

$$
\begin{aligned}
& V_{k}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots, t_{i_{k}, j_{k}} \in \mathcal{T}_{n-1}^{*}} \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{k}-1} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \kappa_{w}(z, s), \\
& \hat{V}_{k}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots, t_{k}, j_{k} \in \mathcal{T}_{n-1}^{*}} \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \hat{k}_{w}(z, s) \text {. } \\
& \sum_{k \geq 0} V_{k}=V_{0} H, \quad \sum_{k \geq 0} \hat{V}_{k}=\hat{V}_{0} \hat{H}, \quad C_{\varsigma \rightsquigarrow z}=V_{0}(\varsigma, z) H(\varsigma, z) .
\end{aligned}
$$

Using φ_{n} and $\hat{\varphi}_{n}$, i.e. reducing by \mathcal{J}_{n}, analogous results hold.

Normalized Chen series as image of diagonal series
$F_{\bullet}:\left(\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \longrightarrow\left(\mathcal{H}(\mathcal{V}), \times, 1_{\mathcal{H}(\mathcal{V})}\right)$ is the w-character defined by
$F_{1_{\tau_{n}^{*}}}=1_{\mathcal{H}(\mathcal{V})}$, for any $t_{i, j} \in \mathcal{T}_{n}, F_{t_{i, j}}(z)=\log \left(z_{i}-z_{j}\right)$ and
$\forall w \in \mathcal{L} y n \mathcal{T}_{n} \backslash \mathcal{T}_{n}, \quad F_{t_{i, j w}}(z)=\int_{0}^{z} \omega_{i, j}(s) F_{w}(s), \quad \omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right)$.
As image by $F_{0} \otimes I d$ of $\mathcal{D}_{T_{n}}$, the graph of F_{0} is expressed as follows
Proposition

Normalized Chen series as image of diagonal series

$F_{\bullet}:\left(\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \longrightarrow\left(\mathcal{H}(\mathcal{V}), \times, 1_{\mathcal{H}(\mathcal{V})}\right)$ is the ш-character defined by
$F_{1_{\tau_{n}^{*}}}=1_{\mathcal{H}(\mathcal{V})}$, for any $t_{i, j} \in \mathcal{T}_{n}, F_{t_{i, j}}(z)=\log \left(z_{i}-z_{j}\right)$ and
$\forall w \in \mathcal{L} y n \mathcal{T}_{n} \backslash \mathcal{T}_{n}, \quad F_{t_{i, j}}(z)=\int_{0}^{z} \omega_{i, j}(s) F_{w}(s), \quad \omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right)$.
As image by $F_{\bullet} \otimes \operatorname{Id}$ of $\mathcal{D}_{\mathcal{T}_{n}}$, the graph of F_{\bullet} is expressed as follows
Proposition

$$
\begin{aligned}
& \mathrm{F}_{K Z_{n}}=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n-1}}^{>} e^{F_{S_{l}} P_{l}}\left(\prod_{\substack{l=l_{1} l_{2} \\
l_{2} \in \mathcal{L} \mathcal{V}_{n} T_{n-1},_{1} \in \mathcal{L} y n}} e^{F_{S_{l}} P_{l}}\right) \prod_{l \in \mathcal{L} y n T_{n}}^{>} e^{F_{S_{l}} P_{l}} \\
& =\prod_{l \in \mathcal{L} y n T_{n}}^{\nmid} e^{F_{s_{l}} P_{1}}\left(1_{\mathcal{T}_{n}^{*}}+\right. \\
& \left.\sum_{k \geq 1} \sum_{\substack{v_{1}, \ldots, v_{k} \in T_{n}^{*} \\
t_{1}, \ldots, t_{k} \in T_{n-1}^{*}}} F_{a\left(v_{1} t_{1}\right)} \underset{\frac{\mu}{2} \ldots}{\underset{2}{2}} \underset{\frac{\mu}{2}\left(v_{k} t_{k}\right)}{ } r\left(v_{1} t_{1}\right) \ldots r\left(v_{k} t_{k}\right)\right) .
\end{aligned}
$$

Modulo $\left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle, \mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right]\right.$, one also has

Normalized Chen series as image of diagonal series

$F_{\bullet}:\left(\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \longrightarrow\left(\mathcal{H}(\mathcal{V}), \times, 1_{\mathcal{H}(\mathcal{V})}\right)$ is the ш-character defined by
$F_{1_{\tau_{n}^{*}}}=1_{\mathcal{H}(\mathcal{V})}$, for any $t_{i, j} \in \mathcal{T}_{n}, F_{t_{i, j}}(z)=\log \left(z_{i}-z_{j}\right)$ and
$\forall w \in \mathcal{L} y n \mathcal{T}_{n} \backslash \mathcal{T}_{n}, \quad F_{t_{i, j}}(z)=\int_{0}^{z} \omega_{i, j}(s) F_{w}(s), \quad \omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right)$.
As image by $F_{\bullet} \otimes \operatorname{Id}$ of $\mathcal{D}_{\mathcal{T}_{n}}$, the graph of F_{\bullet} is expressed as follows
Proposition

$$
\begin{aligned}
& =\prod_{l \in \mathcal{L} y n T_{n}} e^{F_{S_{l}} P_{l}}\left(1_{\mathcal{T}_{n}^{*}}+\right. \\
& \left.\sum_{k \geq 1} \sum_{\substack{v_{1}, \ldots, v_{k} \in T_{n}^{*} \\
t_{1}, \ldots, t_{k} \in T_{n-1}}} F_{a\left(v_{1} t_{1}\right)} \frac{\underset{2}{2} \ldots \frac{山}{2}}{} a\left(v_{k} t_{k}\right) r\left(v_{1} t_{1}\right) \ldots r\left(v_{k} t_{k}\right)\right) .
\end{aligned}
$$

Modulo $\left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \operatorname{Lie}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right]$, one also has

$$
\begin{aligned}
& \mathrm{F}_{K Z_{n}} \equiv e^{\sum_{t \in T_{n}} F_{t} t}\left(1_{\mathcal{T}_{n}^{*}}+\right.
\end{aligned}
$$

Solution of $K Z_{n}(n \geq 4)$ by dévissage

$$
M_{n}=\bar{M}_{n}+M_{n} .
$$

For ${ }^{13} z_{n} \rightarrow z_{n-1}$, let $s=z_{n}$ and $s_{k}=z_{n}-z_{k}(1 \leq k \leq n-1)$. Then

$$
\bar{M}_{n}=\sum_{k=1}^{n-1} d \log \left(z_{n}-z_{k}\right) t_{k, n} \sim_{z_{n} \rightarrow z_{n-1}} N_{n-1}(s)=\sum_{k=1}^{n-1} d \log \left(s-z_{k}\right) t_{k, n} .
$$

2. Letting $\left(P_{i, j}\right): z_{i}-z_{j}=1$, for $i \neq j$, H satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$, where

exactly coincides with M_{n-1} in
13. $\left\{z_{k}\right\}_{1 \leq k \leq n-1}$ are fixed, z_{n} variates moving to z_{n-1} and $d\left(z_{n}-z_{k}\right)=d z_{n}=d s$.

Solution of $K Z_{n}(n \geq 4)$ by dévissage

$$
M_{n}=\bar{M}_{n}+M_{n} .
$$

For ${ }^{13} z_{n} \rightarrow z_{n-1}$, let $s=z_{n}$ and $s_{k}=z_{n}-z_{k}(1 \leq k \leq n-1)$. Then

$$
\bar{M}_{n}=\sum_{k=1}^{n-1} d \log \left(z_{n}-z_{k}\right) t_{k, n} \sim_{z_{n} \rightarrow z_{n-1}} N_{n-1}(s)=\sum_{k=1}^{n-1} d \log \left(s-z_{k}\right) t_{k, n} .
$$

Theorem

For $z_{n} \rightarrow z_{n-1}, ш$-grouplike solution of $\mathbf{d} S=M_{n} S$ can be put in the form $h\left(z_{n}\right) H\left(z_{1}, \ldots, z_{n-1}\right)$ such that,

1. h satisfies $d f=N_{n-1} f$. Hence, $h\left(z_{n}\right) \sim_{z_{n} \rightarrow z_{n-1}}\left(z_{n-1}-z_{n}\right)^{t_{n-1, n}}$.
2. Letting $\left(P_{i, j}\right): z_{i}-z_{j}=1$, for $i \neq j$, H satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$, where

$$
M_{n-1}^{\varphi_{n}^{\left(2^{0}, z\right)}}(z)=\sum_{1 \leq i<j \leq n-1} d \log \left(z_{i}-z_{j}\right) \varphi_{n}^{\left(z^{0}, z\right)}\left(t_{i, j}\right)
$$

exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{k, n-1}\right)$ and

$$
\varphi_{n}^{\left(z^{0}, z\right)}\left(t_{i, j}\right) \sim_{z_{n} \rightarrow z_{n-1}} e^{\left.\overline{a_{d}}-\log \left(z_{n-1}-z_{n}\right)\right) t_{n-1, n}} t_{i, j} \bmod \mathcal{J}_{\mathcal{R}_{n}} .
$$

13. $\left\{z_{k}\right\}_{1 \leq k \leq n-1}$ are fixed, z_{n} variates moving to z_{n-1} and $d\left(z_{n}-z_{k}\right)=d z_{n}=d s$.

Solution of $K Z_{n}(n \geq 4)$ by dévissage

$$
M_{n}=\bar{M}_{n}+M_{n} .
$$

For ${ }^{13} z_{n} \rightarrow z_{n-1}$, let $s=z_{n}$ and $s_{k}=z_{n}-z_{k}(1 \leq k \leq n-1)$. Then

$$
\bar{M}_{n}=\sum_{k=1}^{n-1} d \log \left(z_{n}-z_{k}\right) t_{k, n} \sim_{z_{n} \rightarrow z_{n-1}} N_{n-1}(s)=\sum_{k=1}^{n-1} d \log \left(s-z_{k}\right) t_{k, n} .
$$

Theorem

For $z_{n} \rightarrow z_{n-1}, ш$-grouplike solution of $\mathbf{d} S=M_{n} S$ can be put in the form $h\left(z_{n}\right) H\left(z_{1}, \ldots, z_{n-1}\right)$ such that,

1. h satisfies $d f=N_{n-1} f$. Hence, $h\left(z_{n}\right) \sim_{z_{n} \rightarrow z_{n-1}}\left(z_{n-1}-z_{n}\right)^{t_{n-1, n}}$.
2. Letting $\left(P_{i, j}\right): z_{i}-z_{j}=1$, for $i \neq j$, H satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$, where

$$
M_{n-1}^{\varphi_{n}^{\left(2^{0}, z\right)}}(z)=\sum_{1 \leq i<j \leq n-1} d \log \left(z_{i}-z_{j}\right) \varphi_{n}^{\left(z^{0}, z\right)}\left(t_{i, j}\right)
$$

exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{k, n-1}\right)$ and

$$
\varphi_{n}^{\left(z^{0}, z\right)}\left(t_{i, j}\right) \sim_{z_{n} \rightarrow z_{n-1}} e^{\left.\operatorname{ad}-\log \left(z_{n-1}-z_{n}\right)\right)_{n-1, n} t_{i, j}} \bmod \mathcal{J}_{\mathcal{R}_{n}} .
$$

Conversely, for $z_{n} \rightarrow z_{n-1}$, if h satisfies $d f=N_{n-1} f$ and H satisfies $\mathrm{d} S=M_{n-1}^{\varphi_{n}} S$ then $h\left(z_{n}\right) H\left(z_{1}, \ldots, z_{n-1}\right)$ is solution of $\mathrm{d} S=M_{n} S$.
13. $\left\{z_{k}\right\}_{1 \leq k \leq n-1}$ are fixed, z_{n} variates moving to z_{n-1} and $d\left(z_{n}-z_{k}\right)=d z_{n}=d s$.

Solution of $K Z_{n}(n \geq 4)$ satisfying asymptotic conditions

The previous theorem holds for $z_{n} \rightarrow z_{n-1}$ and can be recursively performed for dévissage.
Up to a permutation, it can be adapted for other cases. Hence,

and G_{i} satisfies $\mathrm{d} S=M_{n-1}^{\varphi_{n}} S$ and, putting $y_{1}=z_{1}, \ldots, y_{i-1}=z_{i-1}$ $y_{i}=z_{i+1}, \ldots, y_{n-1}=z_{n}$, one has
and exactly coincides with M_{n-1} in

Solution of $K Z_{n}(n \geq 4)$ satisfying asymptotic conditions

The previous theorem holds for $z_{n} \rightarrow z_{n-1}$ and can be recursively performed for dévissage.
Up to a permutation, it can be adapted for other cases. Hence,

Corollary

In $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$, the unique $ш$-grouplike solution of NCDE, $\mathrm{F}_{K Z_{n}}$, satisfies

$$
\mathrm{F}_{K Z_{n}}(z) \sim \underset{\substack{z_{i} \rightsquigarrow z_{i-1} \\ 2<i \leq n}}{ }\left(z_{i-1}-z_{i}\right)^{t_{i-1, i}} G_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)
$$

and G_{i} satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$ and, putting $y_{1}=z_{1}, \ldots, y_{i-1}=z_{i-1}$,
$y_{i}=z_{i+1}, \ldots, y_{n-1}=z_{n}$, one has

$$
M_{n-1}^{\varphi_{n}^{\left(y^{0}, y\right)}}(y)=\sum_{1 \leq i<j \leq n-1} d \log \left(y_{i}-y_{j}\right) e^{\operatorname{ad}-\log \left(y_{i}-y_{n}\right) t_{i, n}} t_{i, j} \quad \bmod \mathcal{J}_{\mathcal{R}_{n}}
$$

and exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{k, n-1}\right)$.

Solution of $K Z_{n}(n \geq 4)$ satisfying asymptotic conditions

The previous theorem holds for $z_{n} \rightarrow z_{n-1}$ and can be recursively performed for dévissage.
Up to a permutation, it can be adapted for other cases. Hence,

Corollary

In $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$, the unique $ш$-grouplike solution of NCDE, $\mathrm{F}_{K Z_{n}}$, satisfies

$$
F_{K Z_{n}}(z) \sim \underset{\substack{z_{i} \rightsquigarrow z_{i-1} \\ 2<i \leq n}}{ }\left(z_{i-1}-z_{i}\right)^{t_{i-1, i}} G_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)
$$

and G_{i} satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$ and, putting $y_{1}=z_{1}, \ldots, y_{i-1}=z_{i-1}$,
$y_{i}=z_{i+1}, \ldots, y_{n-1}=z_{n}$, one has

$$
M_{n-1}^{\varphi_{n}^{\left(y^{0}, y\right)}}(y)=\sum_{1 \leq i<j \leq n-1} d \log \left(y_{i}-y_{j}\right) e^{\operatorname{ad}-\log \left(y_{i}-y_{n}\right) t_{i, n}} t_{i, j} \quad \bmod \mathcal{J}_{\mathcal{R}_{n}}
$$

and exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{k, n-1}\right)$.
One obtains results for $\mathbf{d} S=\Omega_{n} S$ by changing $t_{i, j} \leftarrow t_{i, j} / 2 i \pi, 1 \leq i<j \leq n$:

$$
M_{n} \leftarrow \Omega_{n}, \quad \bar{M}_{n} \leftarrow \bar{\Omega}_{n}, \quad \bar{M}_{n-1} \leftarrow \bar{\Omega}_{n-1} .
$$

Solution of $K Z_{n}(n \geq 4)$ satisfying asymptotic conditions

The previous theorem holds for $z_{n} \rightarrow z_{n-1}$ and can be recursively performed for dévissage.
Up to a permutation, it can be adapted for other cases. Hence,

Corollary

In $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$, the unique ш-grouplike solution of NCDE, $\mathrm{F}_{K Z_{n}}$, satisfies

$$
\mathrm{F}_{K Z_{n}}(z) \underset{\substack{z_{i} \rightsquigarrow z_{i-1} \\ 2<i \leq n}}{ }\left(z_{i-1}-z_{i}\right)^{t_{i-1, i}} G_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)
$$

and G_{i} satisfies $\mathbf{d} S=M_{n-1}^{\varphi_{n}} S$ and, putting $y_{1}=z_{1}, \ldots, y_{i-1}=z_{i-1}$,
$y_{i}=z_{i+1}, \ldots, y_{n-1}=z_{n}$, one has

$$
M_{n-1}^{\varphi_{n}^{\left(y^{0}, y\right)}}(y)=\sum_{1 \leq i<j \leq n-1} d \log \left(y_{i}-y_{j}\right) e^{\operatorname{ad}-\log \left(y_{i}-y_{n}\right) t_{i, n}} t_{i, j} \quad \bmod \mathcal{J}_{\mathcal{R}_{n}}
$$

and exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{k, n-1}\right)$.
One obtains results for $\mathbf{d} S=\Omega_{n} S$ by changing $t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi, 1 \leq i<j \leq n$:

$$
\begin{array}{ll}
M_{n} \leftarrow \Omega_{n}, & \bar{M}_{n} \leftarrow \bar{\Omega}_{n}, \quad \bar{M}_{n-1} \leftarrow \bar{\Omega}_{n-1} . \\
\text { THANK YOU FOR YOUR ATTENTION }
\end{array}
$$

[^0]: 2. See also DOI: $10.5802 / \mathrm{cml} .59$ (On the solutions of the universal differential equation with three regular singularities) and my talk at the XV International Workshop Lie Theory and Its Applications in Physics, 19-25 June 2023, Varna, Bulgaria.
[^1]: 8. By the standard factorization, $\mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n} . \mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n}$.
[^2]: 8. By the standard factorization, $\mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n} . \mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n}$.
